

pragma SYSTEMS CORPORATION
www.pragmasystems.com

703-796-0010
info@pragmasystems.com

Don't waste valuable time and resources developing CMMI-compliant processes from scratch when
there is a proven approach that guarantees success. With processMax®, you begin operating in
compliance immediately: no process development is required!

processMax is a complete project management system, integrated with Microsoft Project, and is
guaranteed by pragma SYSTEMS to be compliant with CMMI-DEV.

With processMax, managers and their teams efficiently collaborate with step-by-step procedures,
integrated document management, risk management, automated workflow, and automated meas-
urement and reporting. processMax increases productivity, reduces defects, and manages risk.

Now available as a hosted service for both our subscription and perpetual licenses, processMax is
more affordable than ever. We manage the server, installation, updates, and upgrades.

More than 70 organizations have passed Level 2 and Level 3 appraisals with processMax, at a frac-
tion of the time and expense required by traditional methods.

Manage your projects in guaranteed compliance
with the CMMI — Now!

How long can you wait for CMMI® Compliance?

GSA Schedule Contract NO. GS-35F-0559S. processMax is a registered trademark of pragma SYSTEMS CORPORATION.
Although processMax makes use of portions of “CMMI for Development, Version 1.2,” CMU/SEI-2006-TR-008, copyright 2006 by Carnegie Mellon University,

neither the Software Engineering Institute nor Carnegie Mellon University have reviewed or endorsed this product.
Copyright 2010 pragma SYSTEMS CORPORATION

Please contact us to learn how
processMax, can help you achieve your

compliance goals.

This is a paid advertisement.
STN 14-1 February 2011: DoD and Open Source Software2

TECH VIEWS
By John Dingman, Editor

It has been three and a half years since Software Tech
News addressed the topic of Open Source Software
(OSS). In that time, as Kane McLean writes in his article,

“Military Open Source Community Growing”, its use in the
Department of Defense (DoD) has grown significantly, widely
adopted and implemented in a variety of systems.

While the rate of change in technology grows exponentially,
DoD needs to continue to develop new capabilities ever faster.
Gone forever are the days of a single contractor developing
a system from scratch, uniquely matched to the required
application. The need for commonality across platforms,
interoperability between networks and shared functionality
across organizations drive reusing what exists rather than
reinventing the same basic constructs. Matthew Kennedy
discusses the factors one should consider in his article,
“Evaluating Open Source Software”.

As agencies look for ways to cut development costs while
reducing development time the availability of open source
components becomes more than just an attractive alternative.

But simply downloading a publicly available component and
including it in a project can lead to significant repercussions.

Dr. David A. Wheeler points out in his article, “Open Source
Software (OSS) is Commercial”, it is in fact a commercial
product, often developed to make a profit. John Scott, Dr.
Wheeler, Mark Lucas and J.C. Herz discuss licensing and
intellectual property issues in “Running Open Technology
Development Projects”. Lawrence Rosen explains many of
the issues concerning copyrights and patents in his article,
“Implementing Open Standards in Open Source”.

Failure to recognize these technical and legal implications
can impact the long term usability of a developed product. In
the last three years of OSS use in the DoD there have been
many lessons learned, one of them being that there are still
challenges ahead.

Author Contact Information

Email: news-editor@thedacs.com

The DACS OSS topic page contains information relative to the development, use,
licensing and promotion of open source software including operating systems,
browsers and applications: https://www.thedacs.com/databases/url/key/4878[]

DILBERT

Data & Analysis Center for Software (DACS) 3

Software is a Renewable Military Resource
By John Scott, Dr. David A. Wheeler, Mark Lucas, and J.C. Herz

Software is the fabric that enables planning, weapons
and logistics systems to function: it might be the only
infinitely renewable military resource.

In particular, DoD must have a software environment that is
easily adaptable to changing mission needs; this software must
also evolve at lower cost and be delivered rapidly so it can be
used when it is needed. This technological evolution entails a
parallel evolution in acquisitions methodologies and corporate
attitude to facilitate discovery, re-use, and modification of
software across the DoD and U.S. Government. A new way
is needed to develop, deploy and update software-intensive
systems that will match the tempo and ever-changing mission
demands of military operations.

Software code has become central to how the war-fighter
conducts missions. If this shift is to be a strength, rather
than an Achilles’ heel, DoD must pursue an active strategy
to manage its software portfolio and foster a culture of open
interfaces, modularity and reuse [Scott2010]. Moving forward,
the government needs to define a modern software intellectual
property regime to broaden the defense industrial base by
enabling industry-wide access to defense knowledge, thereby
increasing competition and eventually lowering the cost of
innovation. Over time, the military would evolve common
software architectures and industry-wide baselines to increase
the adaptability, agility and - most important - capacity to
meet new dynamic threats.

Military Open Technology Development (OTD)
Strategy

Open Technology Development (OTD) has become an
approach to military software/system development in which
developers (outside government and military) collaboratively
develop and manage software or a system in a decentralized
fashion. OTD depends on open standards and interfaces,
open source software and designs, collaborative and distributed
online tools, and technological agility. [OTD2006]

These practices are proven and in use in the commercial
world. Open standards and interfaces allow systems and
services to evolve in a shifting marketplace. Using, improving,
and developing open source software minimizes redundant
software engineering and enables agile development of
systems. Collaborative and distributed online tools are now
widely used for software development. The private sector
also often strives to avoid being locked into a single vendor or
technology and instead tries to keep its technological options
open (e.g., by adhering to open standards). Previous studies
have documented that open source software is currently used in
many of DoD’s critical applications and is now an inseparable
part of military infrastructure [MITRE2003] [OTD2006].

OTD methodologies rely on the ability of a software
community of interest to access software code or application
interfaces across the enterprise. This access to source code,
design documents and to other developers and end-users
enables decentralized development of capabilities that leverage
existing software assets. OTD methodologies have been used
for open source development, open standards architectures,

and the most recent generation of web-
based collaborative technologies. The most
successful implementations come from direct
interaction with the end-user community.
The open source software development model
is successful because communities of interest
involve both developers and users.

“The United States cannot retreat behind a Maginot Line of firewalls or it will risk being overrun.
Cyberwarfare is like maneuver warfare, in that speed and agility matter most.”

– William J. Lynn III. [Lynn2010]

“In a real world of limited resources and skills, individuals and groups
form, dissolve and reform their cooperative or competitive postures
in a continuous struggle to remove or overcome physical and social
environmental obstacles. Technological agility should be a metric.”

 – Col John Boyd (USAF) [Boyd1976]

STN 14-1 February 2011: DoD and Open Source Software4

SOFTWARE IS A RENEWABLE MILITARY RESOURCE (CONT.)

OTD includes open source initiatives but is not limited
to open source software (OSS) development and licensing
regimes, which enforce redistribution of code. It is important,
in the context of this report and resulting policy discussions,
to distinguish between OSS and OTD, since the latter may
include code whose distribution may be limited to DoD, and
indeed may only be accessible on classified networks. Nor does
the promotion of OTD within DoD impinge on the legal
status of software developed by with private sector money by
commercial vendors.

Some key benefits of OTD are listed
below and in the following articles in this
issues of DACS:

•	 Increased Agility/Flexibility: Because
the government has unrestricted access
and rights to the source code it has
paid to develop, and can therefore
make that code discoverable and
accessible to program managers and
contractors alike, it is possible to find
an “80% solution” and modify it for
a new mission. Likewise, pre-existing
government-funded components from
different programs can be assembled
without having to hack through a
thicket of intellectual property rights
which require lawyers to negotiate.
Instead of having to start from scratch
every time it wants to develop a
capability, the government can find
what works and draw from a broad
base of developers and contractors
who can rapidly assemble and modify
existing systems and components.

•	 Faster delivery: because developers
only need to focus on changes to, and integration
of, existing software capabilities, instead of having to
redevelop entire systems, they can cut the time to delivery
for new capabilities. Even when a module or component
is developed from scratch to replace an outdated one, it
benefits from open interfaces and standards in the systems
with which it interacts. With “goes intas and goes outtas”
in hand, development and deployment time can be cut.

•	 Increased Innovation: Because they have access to the
source code for existing capabilities, developers and
contractors can focus their time and effort on innovation,
i.e. writing the code that takes existing capabilities to a

new level, or synthesizes components into a whole that’s
greater than the sum of its parts. This is particularly
important because of a projected shortfall in the number
of U.S. citizens with engineering and computer science
degrees who will be clearable to work on military projects
in the coming decades [National Academies 2008]. As a
greater proportion of software engineering degrees are
held by foreign nationals, and U.S. programmers are
lured by innovative and lucrative work in the private

sector, the military will face a long-term shortage of
software engineers to work on military-specific systems.
The Defense Department therefore must focus on the
long-term challenge of getting more innovation out of a
restricted talent pool. It will be important to leverage that
human capital by having engineers focus on the 10% of
source code that actively improves a system, vs. the 90%
that’s there just to allow a system to plug into existing
networks and perform pre-existing functions.

•	 Information Assurance & Security: One of the biggest
values of open source development is enabling wider
community access to software source. In this manner

“Software
might be the
only infinitely

renewable military
resource.”

Data & Analysis Center for Software (DACS) 5

SOFTWARE IS A RENEWABLE MILITARY RESOURCE (CONT.)

all bugs become shallow and more easily found. Wider
access to software source code also is key for forming and
maintaining a software security posture from being able
to review software source code to seeing what is actually
present within that software.

•	 Lower cost: The first cost to fall by the wayside with OTD
is the monopoly rent the government pays to contractors
who have built a wall of exclusivity around capabilities
they’ve been paid by the government to develop. They may
have internally developed source code (IRAD – internal
research and development) that’s valuable, but in an OTD
system that code has been modularized so the government
can make a rational decision about whether they want
to re-license it for a new project or pay to develop a
replacement. The entire value of the government’s
investment hasn’t been voided by the mingling of IRAD
into a government funded system as a means of ensuring
lock-in to a particular vendor. With unlimited rights and
access to government-funded source code, the government
can draw on a broader pool of competitive proposals for
software updates and new capabilities that leverage current
systems. The elimination of monopoly rent, combined
with greater competition, will drive down costs and
improve the quality of resulting deliverables, because any
contractor who works on a system knows that they can be
replaced by a competitor who has full access to the source
code and documentation of an OTD system.

Off-the-shelf (OTS) Software Development Approaches,
including Open Government OTS (OGOTS) and Open
Source Software (OSS)

Military programs must adapt and move its software
and technologies away from passively managed and closed
GOTS (Government Off-the-Shelf) programs toward Open
Government Off-the-Shelf (OGOTS) and ultimately toward
Open Source Software (OSS) for maximum flexibility and
agility.

Open Technology Development involves community
development among government users, and thus includes both
OSS and OGOTS. An OTD strategy allows organizations
to develop and maintain software in a collaborative way. To
maximize collaboration, software should be developed to use
off-the-shelf (OTS) components and to be itself OTS to the
maximum practical extent.

Off-the-shelf (OTS) software is simply software that is ready-
made and available for use. The rationale for developing OTS

software is to create software that can be used for multiple
purposes, instead of using custom-built software for a single
purpose and use. OTS software has the potential to save time,
save money, increase quality, and increase innovation through
resource pooling. Even when a custom system is needed,
building it from many OTS components has many advantages.

There are many different ways that off-the-shelf (OTS)
software can be maintained. Some OTS may be retained
and maintained inside the U.S. government (e.g., because
it is classified or export controlled); such software is termed
government OTS (GOTS). Off-the-shelf items that are
commercial items (e.g., by being sold, licensed, or leased to
the public for non-governmental use) are commercial OTS
(COTS). Note that by law and regulation, software licensed to
the public and used for at least one non-government purpose
is COTS software, even if it is maintained by the government.
Figure 1 illustrates these different kinds of OTS maintenance
approaches.There are two kinds of commercial OTS (COTS)
software: Open Source Software (OSS) and proprietary
software. In either case they may be maintained by a single
maintainer or by a community. In community maintenance
there is often a single organization who determines if proposals
should be accepted, but the key here is that the work tends to
be distributed among those affected.

Today, where there is GOTS software at all, it tends to be
developed and maintained by a single maintainer. This tends
to reduce GOTS’ applicability. Many government programs
might potentially use a GOTS component if certain changes
were made, but cannot make the changes to the GOTS
component directly, and even if they did, there is no structure
by which those changes could be merged back into the main
GOTS product for all to use. In contrast, most OSS projects
are maintained by communities, where different organizations
actively work together to develop software that is useful to
them all. Single-maintainer OSS project exist, but they are
less common.

An Open GOTS (OGOTS) project is a GOTS project
which uses multiple-organization collaborative development
approaches to develop and maintain software, in a manner
similar to OSS. Such a project within the DoD is sometimes
termed “DoD community source software.” One goal of this
paper is to increase the number of GOTS projects that are
OGOTS projects. A project may become OGOTS instead
of OSS because its leaders want the innovation, speed of
development, and lowered cost that can come from co-
development by many parties, yet:

STN 14-1 February 2011: DoD and Open Source Software6

1. The government lacks the intellectual rights to make it
more open (e.g., the government may have government-
purpose rights (GPR) and not unlimited rights), and/or

2. The government wishes to maintain a national security
advantage by not making that software available to
potential adversaries (typically such software will be
classified and/or export controlled).

In addition, GOTS projects should determine when they
should become COTS (e.g., as community-supported OSS
projects). In particular, GOTS projects should seriously
consider switching to OSS maintenance after a system has
been deployed. There are various reasons why the government
should keep certain software in-house, e.g., because sole
possession of the software gives the U.S. a distinct advantage
over its adversaries. However, technological advantage is
usually fleeting. Often there is a commercially-developed item
available to the public that begins to perform similar functions.
As it matures, other organizations begin using this non-GOTS
solution, potentially rendering the GOTS solution obsolete.
Such cases often impose difficult decisions, as the government

must determine if it will pay the heavy asymmetrical cost to
switch, or if it will continue “as usual” with its now-obsolete
GOTS systems (with high annual costs and limitations
that may risk lives or missions). This means that there is
considerable risk to the government if it tries to privately hold
GOTS software within the government for too long.

As Defense Secretary Robert Gates said “The gusher has
been turned off and will stay off for a good period of time.”
DoD needs a more efficient software development ecosystem
– more innovation at lower cost - and OTD squeezes financial
waste out of the equation by reducing lock-in and increasing
competition.

References

 [Boyd1976] Boyd, Col. John, Destruction and Creation - John
Boyd - Winning and Losing, Sept 3, 1976

 [Lynn2010] Lynn, William J. III. September 2010. “Defending
a New Domain: The Pentagon’s Cyberstrategy”. Foreign
Affairs.

Open Technology Development

Community
Developed:

Single
Maintainer:

Community
Maintained

OSS

Single
Maintainer

OSS

OSS

Gated
SW

Typical
Proprietary

SW

Proprietary

COTS

Open
GOTS

Closed
GOTS

GOTS
Figure 1: Off-the-Shelf (OTS) Maintenance Strategies

Data & Analysis Center for Software (DACS) 7

SOFTWARE IS A RENEWABLE MILITARY RESOURCE (CONT.)

 [MITRE2003] MITRE Corporation. January 2, 2003. Use
of Free and Open-Source Software (FOSS) in the U.S.
Department of Defense. http://cio-nii.defense.gov/sites/
oss/2003Survey/dodfoss_pdf.pdf

 [National Academies 2008] Rising Above the Gathering
Storm: Energizing and Employing America for a Brighter
Economic Future. Report of the Committee on Science,
Engineering, and Public Policy. National Academies Press,
2008

 [OTD2006] J.C. Herz, Mark Lucas, and John Scott. April
2006. Open Technology Development Roadmap Plan. http://
www.acq.osd.mil/jctd/articles/OTDRoadmapFinal.pdf.

 [Scott2010] Scott, John. 2010. Pentagon is Loosing the
Softwar(e). Denfense News June 21, 2010. http://www.
defensenews.com/story.php?i=4677662

This document is released under the Creative Commons
Attribution ShareAlike 3.0 (CC-BY-SA) License. You are free

to share (to copy, distribute and transmit the work) and to remix
(to adapt the work), under the condition of attribution (you must
attribute the work in the manner specifi ed by the author or licensor
(but not in any way that suggests that they endorse you or your use
of the work)). For more information, see <http://creativecommons.
org/licenses/by/3.0/>.

Th e U.S. government also has unlimited rights to this document
per DFARS 252.227-7013.

About the Authors

John Scott is a Senior Systems Engineer
and Open Technology Lead forRadiantBlue
Technologies, Inc. with expertise in
engineered systems and bridging the
gap between decision-makers, scientists,
and engineers to develop policies for
acquiring and deploying new technologies
in the Department of Defense and US
Government.

Look for the DACS
Calendar for a
listing of upcoming
DoD and Software
Engineering events.

STN 14-1 February 2011: DoD and Open Source Software8

John helped draft the U.S. Department of Defense policy
for the use of open source software as well as founded (now
co-chairman) Open Source for America, an advocacy group for
use of open source software in government and the Military
Open Source Software workign group (http://mil-oss.org/).
He is also a member of the Council on Foreign Relations.
He holds a BS in Mechanical Engineering from Lehigh
University, an MS in Systems Engineering from Virginia Tech.
and serves as the chairman of the National Defense Industrial
Association’s Command, Control, Communications and
Computers (C4) division. He writes about defense software
and acquisitions related issues, most recently at Defense News
entitled “Pentagon Is Losing the Softwar(e).” jms3rd@gmail.
com, jscott@radiantblue.com.

Dr. David A. Wheeler works at the Institute
for Defense Analyses (IDA). Dr. Wheeler is
a well-known expert in developing secure
software and open source software. His
works on security include the book “Secure
Programming for Linux and Unix HOWTO,”
his ‘developerWorks’ column “Secure
Programmer,” and the article “Countering

Trusting Trust through Diverse Double-Compiling (DDC).”
He is a co-author of the NDIA document “Engineering for
System Assurance,” and the author of “Why Open Source
Software? Look at the Numbers!”, a collection of quantitative
studies where he argued that considering OSS is justified.
This article has been cited in over 80 scholarly works and in
government reports such as the 2004 report of the California
Performance Review.

Dr. Wheeler has previously written on the issue of OSS being
commercial. This is a critical issue in U.S. federal government
acquisitions, because the U.S. government has laws and policies
that prefer the acquisition of commercial items.

J.C. Herz is a technologist with a
background in biological systems and
computer game design. Her specialty
is massively multiplayer systems that
leverage social network effects, whether
on the web, mobile devices, or more
exotic high-end or grubby low-end
hardware. Her defense projects range
from aerospace systems to a computer-

game derived interface for next generation unmanned air
systems. J.C. was a member of the National Research Council’s
committee on IT and Creative Practice, and is a founding
member of the IEEE Task Force on Game Technologies.

Mr. Mark Lucas has pioneered efforts
in Open Source Software Development
in remote sensing, image processing, and
geographical information systems. Mark
established remotesensing.org and has led
several government funded studies and
development efforts since 1996. These

efforts include the Open Source Software Image Map (OSSIM)
projects for the NRO, the Open Source Prototype Research,
and the Open Source Extraordinary Program projects for NGA.
He is currently leading the Open Technology Development
effort within DoD AS&C in collaboration with NII, and the
Business Transformation Agency.

Mark has a BS in Electrical Engineering and Computer
Science from the University of Arizona and a MS in Computer
Science from West Coast University. He was commissioned
in the Air Force and assigned to the Secretary of the Air Force
Special Projects organization. He has experience as both a
government and contractor program manager through a
number of classified programs. He is on the Board of Directors
of the Open Source Geo-spatial Foundation, the Open Source
Software Institute, and the National Center for Open Source
Policy and Research. Mark is currently a principal scientist at
RadiantBlue Technologies, Inc.

Work sponsored by the Assistant Secretary of Defense (Networks
& Information Integration) (NII) / DoD Chief Information
Officer (CIO) and the Under Secretary of Defense for Acquisition,
Technology, and Logistics (AT&L)

Data & Analysis Center for Software (DACS) 9

Military Open Source Community Growing
By Kane McLean, BRTRC Technology Research Corporation

Open source software (OSS) usage is growing across
the Department of Defense (DoD), not surprisingly
so is the community of open source developers and

integrators. In industry and the technology community at
large many consider open source to be somewhat of a social
movement centered around the free exchange of technological
ideas; however across the DoD, where pragmatism so common
in the Information Technology (IT) landscape, OSS is often
simply the best solution to the military’s technology challenges.

In 2009 the DoD issued the policy memo Clarifying
Guidance Regarding Open Source Software (mil-oss.
org/resources/us-dod_policy-memo_clarifying-guidance-
regarding-oss_16oct2009.pdf) which defines “open source
software” as “software for which the human-readable
source code is available for use, study, reuse, modification,
enhancement, and redistribution by the users of that software.
In other words, OSS is software for which the source code is
‘open’.” Although minor issues such as some Security Technical
Implementation Guides (STIG) compliance remain to be
worked out, this memo clears the last substantive policy
obstacle for OSS use within the DoD and its services.

Open source projects in the private sector naturally attract
contributors and organized community involvement, it is only
natural that the same is happening now that the DoD has
embraced OSS. One of the first groups to gain momentum is
Military Open Source (Mil-OSS). Each year, the group hosts
a convention called a Working Group where members from
all over the United States come together to learn, share and
discuss OSS projects, upcoming policy changes and how to
understand and support the military in its adoption of OSS.

WG2: The 2010 Military Open Source Conference
In August of 2010, Mil-OSS hosted its second annual

Working Group (WG2). The speakers and topics for the 2010
conference reflected not only applying OSS to current DoD
IT challenges, but the hot IT issues DoD faces at large such
as Cyber Security, DoD Social Platforms, Cloud Computing,
CMS Platforms, and more.

The WG2 speakers included people from government,
military and industry. Lt. Gen. Robert J. Elder, Jr. (Ret.)
delivered a keynote which discussed the challenges of modern

loose working structures operating within and against the
hierarchical environment of the DoD. Lt. Col. Nate Allen’s
keynote discussed the of adoption of gated social networks
by the U.S. Army for professional development through the
Company Command and Platoon Leader forums as well as the
ORION project which brings social workflows to the Army’s
senior leaders. H.D. Moore discussed Open Source Cyber
Weaponry in his keynote address.

The roster of 45 speakers included government/military
employees and contractors from organizations including the
DoD, Army, Navy, Marine Corps, Air Force, Red Hat, Georgia
Tech Research Institute, BRTRC, Boeing, Lockheed Martin,
SecureForce, Geocent, IDA, Acquia, QinetiQ, Open Information
Security Foundation, DHS, DISA, HHS, among others.

Daniel Risacher, who helped craft the recent OSS guidance
from the DoD CIO, discussed the development and impact of
the new policy memo and held an open Question and Answer
session for the community about it.

Anyone who also attended WG1 (the 2009 Mil-OSS
Working Group), could not have escaped noticing how much
traction the Open Source community has gained in the DoD
within the last twelve months. With the new DoD OSS
guidance, the overall community tone has shifted from “can
we?” to “the game is afoot!”

Mil-OSS is an active grass-roots organization that connects
and empowers an active community of both civilian and
military developers using, improving, and releasing Open
Source Software and hardware across the United States
Department of Defense. Most members of Mil-OSS work
with the DoD either directly or as contractors, and see their
work in open source DoD projects as a patriotic support for
our country’s warfighters. OSS allows the DoD to improve
software security, control development costs and increase
innovation—all of which benefit the Warfighter.

About Mil-OSS
The idea for the organization goes back to 2003 when Josh

Davis, one of the founders, began a dialogue with James
Neushul about open-sourcing a project they were working
on. Next Josh met Heather Burke with whom he shared the

STN 14-1 February 2011: DoD and Open Source Software10

 MILITARY OPEN SOURCE COMMUNITY GROWING (CONT.)

idea of pulling together a military based open source software
conference. Heather introduced him to John Scott, the
other founder of Mil-OSS. Over the next several months key
individuals joined the conversation including Mike Howard,
Gunnar Hellekson, Kit Plummer and Kane McLean.

By 2008, the organization had taken shape and the fi rst
annual Working Group (WG1) was being planned for the
summer of the following year. Needing a quick online rally-
point for the new community, the Mil-OSS Google Group
was started along with other social media outlets to support
the organization.

About the same time, the Mil-OSS decided to team up with
Open Source For America (OSFA). Mil-OSS decided that
operating as a working group under OSFA’s umbrella would
benefi t both communities more than working separately.

 Looking Forward
With the DoD policy favoring open source practices and

software as benefi t to national defense, it’s no wonder that Mil-
OSS community is growing daily. Th e annual Working Group
will be held each year, and local MeetUps and BarCamps are
being established in cities across the country so the community
can continue to work together throughout the year. It’s a great
time to be involved in Open Source projects in the Military;
we’re all looking forward to the innovation that will come
from it.

About the Author

Kane McLean is part of the Strategy
& Communications Group at BRTRC
Technology Research Corporation and
currently works supporting the Under
Secretary of the Army at the United States
Army Offi ce of Business Transformation.

An Open Source advocate, evangelist and
strategist, Kane works to fi nd the right solutions to clients’
challenges—more often than not Open Source solutions
provide the best-fi t and prove to be the most fl exible long-
term solutions. In addition to creating the strong solution
strategies, Kane works to tout the business case for Open
Source adoption.

Prior to joining BRTRC, Kane led a company that helped
corporations and organizations develop their online presence,
enhance their strategic communication and improve their
collaboration capabilities by adopting open source web-based
technologies. Kane is a former entrepreneur having founded
two companies, the last of which he sold in 2008 before
becoming a defense contractor.

Kane also serves on the Steering Committees of both OSFA
and Mil-OSS.

“Mil-OSS is an active grass-roots organization that connects and empowers an active
community of both civilian and military developers using, improving, and releasing Open Source
Software (OSS) and hardware across the United States Department of Defense (DoD).”[]

Data & Analysis Center for Software (DACS) 11

Evaluating Open Source Software
By Matthew Kennedy

There is an overwhelming amount of open source
software (OSS) available today that can be used
throughout the software development life cycle.

Nowadays, it is generally not a matter of whether one should
use OSS, but rather, where one should use it. If one were to start
a new software development project, he would probably begin
by looking for various types of software to aid in development,
such as an integrated development environment, version control
system, and a bug tracking tool, to name a few. If he looked
exclusively for OSS, he could use Eclipse for the integrated
development environment, Subversion for the version control
system, and Bugzilla for the bug tracking tool. Th ose products
are available for download and are open source. Looking outside
the development environment, one’s deployed system may
require a database. A person could use a proprietary database
such as Microsoft® Access, Microsoft® SQL Server, Oracle®, or
an open source option such as MySql. When looking to fi ll a
technological need, OSS may be a viable option.

In July 2008, the U.S. Air Force Offi ce of Advanced Systems
and Concepts funded Georgia Tech Research Institute to create

and release an open source version of FalconView. Used by
the Department of Defense since the 1990s, FalconView is a
comprehensive mapping tool that supports various mapping
formats and includes ample map analysis tools. With both
government and private applications moving to open source
development, the proper evaluation of OSS throughout the
program is imperative to making informed decisions that could
aff ect the life cycle of the project. What are some of the factors
that must be considered when choosing whether to use OSS?

What is OSS?
According to a DoD chief information offi cer memorandum

of 2009, “Clarifying Guidance Regarding Open Source
Software,” OSS is “Software for which the human-readable
source code is available for use, study, reuse, modifi cation,
enhancement, and redistribution by the users of that software.”

Th at defi nition of OSS could apply to various terms used
throughout federal and DoD guidance and directives. Th e
Federal Acquisition Regulation/Defense Federal Acquisition
Regulation Supplement defi nes commercial computer software

STN 14-1 February 2011: DoD and Open Source Software12

EVALUATING OPEN SOURCE SOFTWARE (CONT.)

as “Any item, other than real property, that is of a type
customarily used by the general public or by non-governmental
entities for purposes other than governmental purposes, and (i)
Has been sold, leased, or licensed to the general public; or (ii)
Has been offered for sale, lease, or license to the general public.”

Chapter four of the Defense Acquisition Guidebook defines
non-developmental software as “Any software that is not legacy
software for the program, or is not developed as part of the
effort being accomplished by the developer team. This includes
COTS software, government furnished software, open source
software, and software being reused from another program.”

These definitions show that although OSS is not explicitly
defined in DoD guidance and directives, the terms already in
place clearly fit. Some OSS projects are as big as, if not bigger
than, their proprietary counterparts. According to its website,
MySQL, an open source database application, has had more than
100 million copies of its software downloaded or distributed
throughout its history and is currently on release 5.5.

Open source software is generally thought to be free as in
it has no costs. Though that is true in most cases, generally
the term “free” is used in reference to the liberty of interested
parties to freely distribute the source code. That is an important
aspect to keep in mind when considering the use of OSS—
there may be a cost.

Like proprietary software, OSS comes with licenses such
as the GNU or Apache license. This article does not cover
the licensing associated with OSS; however, it is important
that the proper legal representative reviews the license prior
to making the final decision. This assures that the manner in
which interested parties intend to use the OSS is in accordance
with the license.

Is OSS an Open System?
There is no direct correlation between an open system and

OSS. Open source specifies that the human-readable source
code of the application is available. In contrast, an open system,
as defined by the Open Systems Joint Task Force, is specified as
“A system that employs modular design, uses widely supported
and consensus based standards for its key interfaces, and has
been subjected to successful validation and verification tests
to ensure the openness of its key interfaces.”

The question as to whether OSS meets the definition of an
open system must be addressed per DoD Directive 5000.01:
“A modular, open-systems approach shall be employed, where

feasible.” Because there are generally many contributors to open
source projects, they tend to have a modular design; however,
this is not always the case. Open Office has 450,000 members
that have joined the project, so enforcing a modular design is
paramount for continued success. Without a modular design,
it would be extremely difficult to modify the source code of
such a large application with so many contributors.

Another part of the open system definition is using
consensus- based standards for key interfaces; this is also
referred to as using open standards. Open standards play a
critical role in our systems with modifiability, maintainability,
and increased competition. Open standards have no direct
correlation to OSS. Though most OSS projects use open
standards, it is not required. Each OSS project must be assessed
individually to determine if it is, indeed, an open system.

Are the Releases Controlled?
As with most software, OSS has multiple versions, releases,

and security updates of which one’s program is not in control.
The need for life cycle configuration management is vital in
ensuring system compatibility. A strategy needs to be developed
to determine how one’s program will handle periodic releases
of the OSS software. Depending on the software, each release
may require configuration, interface and installation, or system
changes to remain compatible with the rest of the system.

What is the Maturity of the Open Source Commu-
nity?

Similar to a standard commercial company, the maturity
and size of the open source community can vary greatly. Open
source projects can be started by a single developer who has
made its source code available and gained additional support
as the project grew, or by corporations who fund and assist
in the development of the project. Open Office, an open
source office suite, is sponsored by Sun® Microsystems and
has other corporate contributors such as Google® and IBM®.
The Open Office project contains 30,000 source files and 9
million lines of primarily C++ code, according to the Open
Office website, and it contains many of the features included
in Microsoft Office.

Many factors affect the maturity of the open source
community supporting the project. Navica® has developed an
Open Source Maturity Model®, which is freely available and
will assist in the assessment of the open source project. The
Open Source Maturity Model provides a variety of templates
to assess different areas of the open source project such as
documentation, integration, product software, professional

Data & Analysis Center for Software (DACS) 13

services, technical support, and training. Those items are
then further decomposed to help assess each area of the open
source project.

Do You Need to Modify the Source Code?
The major difference between proprietary software and OSS

is the ability to view, modify, and distribute the application
source code. Code modification may lead to some undesired
effects on the life cycle of the system. Modifying the source
code would force the program to keep a private copy that
is different from the open source project’s repository. That
may work without issue for the initial release, but remember,
just like proprietary software, OSS periodically releases new
versions, patches, and upgrades. Once one breaks off from the
primary project, he or she is now responsible for any upgrades
and associated testing as the releases may not be compatible
with the modified version.

Code modification may not be as easy as one might
think. Take the Open Office project mentioned previously.
If someone required a code modification and provided the
development team with 9 million lines of code, a seemingly
trivial modification may turn out to be a daunting task.
Unfamiliarity with the application or programming language
may cause additional complications. Most OSS uses a modular
design so it can be easier to locate the code segment for
which the modification is needed; however, the effects on the
application may still be unknown.

One possibility is to make the modifications to the source
code and submit the update to the OSS project’s committee
for review and possible incorporation within the next software
release. If accepted, the update would go through the project’s
revision, testing, and review process during subsequent
releases, and one would no longer need the old version of
the software. Similar to most commercial software, the open
source community does what is best for the community and
not one’s specific program. Therefore, there is no guarantee
one’s changes will be included in the next software baseline.
As with any software application, when new functionality is
added, the project is now responsible for maintenance, testing,
and bug fixes for the added piece of functionality.

While modifications provide an added level of complexity,
OSS does provide several alternatives over commercial
software. One alternative may be deciding there is only a
need to use a portion of the source code within the project. If
the OSS is modular in design, it may be easy to extract only
the functionality needed to incorporate into the application.
That may be the best option if only a small piece of the OSS
functionality is required. As with proprietary software, there

is a point where “too much of a good thing” can turn bad. If
one takes several pieces of different systems and includes them
in his system, the system may become difficult to maintain,
especially when each addition is in a different programming
language, contains different interfaces, and may require
additional dependencies. This can be exemplified by using a
car analogy. Consider buying a Chevy Camaro but realizing
that it will require the engine in the Ford Mustang and the
electronics of the Audi A4. After integrating the required
functionality of the other automobiles, the owner would have a
system that met all of his requirements. However, if the vehicle
needed maintenance, the owner would no longer be able to
take it back to the Chevy dealership because a modification to
the electronics system may adversely affect the engine because
the components were not initially design to work together. In
addition, if Audi releases an electronics upgrade, the owner
may be unable to use the new software due to compatibility
issues with the nonstandard engine.

Is OSS the Full Solution?
As with most proprietary products, OSS may not provide a

solution that will satisfy everyone’s requirements. Users may
have to sacrifice functionality for a faster time to field. Gen.
David Petraeus, commander of U.S. Central Command,
recently said in an interview, “Never underestimate how
important speed is.” Additionally, he pointed out that in most
cases, the soldiers are willing to accept an 80 percent solution.
This is where constant user involvement is imperative in order
to help make an informed decision. The user decides if less
functionality provided sooner outweighs the time needed to
develop the functionality from the ground up.

Conversely, OSS comes with a variety of features and could
include many more features than are required by one’s program.
This inundation of extra features may require additional
training, testing, and/or information assurance assessments to
use the software in an operational environment. Removal of
those features is also an option, but one must remember the
risks mentioned in the modification section.

Does OSS Offer Maintenance and Support?
OSS may also contain a maintenance and support element

that is available for a cost. MySQL offers an enterprise package
that includes the software, support, and additional monitoring
tools. Depending upon the needs of the program, one may
consider a support package in which the cost would need to
be added into the life cycle cost of the system.

Overall Evaluation of OSS
If one chooses to modify the source code and keep his own

version, OSS can easily morph into government off-the shelf

EVALUATING OPEN SOURCE SOFTWARE (CONT.)

STN 14-1 February 2011: DoD and Open Source Software14

software, losing most of the value of leveraging from the OSS
community. At that point, the program becomes responsible
for having developers available for maintenance and support.
One may also fi nd himself maintaining a great deal more
features than what is required for the program. Most OSS
projects make the executable (installer) available for download.
If one were to only download the executable, he will be left
with what is essentially a proprietary product but with the
added benefi t of having access to the source code. Modifying
the source code may be a researcher’s best option as long as he
is prepared for the possible future consequences.

Th e items identifi ed in this article are only a few of the
considerations for evaluating OSS for use within a program.
Other factors that may need consideration are security,
prerequisites, reliability, and performance. The Defense
Acquisition University Best Practices Clearinghouse (<https://
bpch.dau.mil>) contains a forum to enable the sharing of best
practices when evaluating OSS throughout DoD.

Remember, the open source community is available because
projects make their source code available. Making someone’s

EVALUATING OPEN SOURCE SOFTWARE (CONT.)

code available may allow for external reviews and could
improve code quality. Th e Defense Information Systems
Agency has developed an online open source repository at
<www.forge.mil> called SoftwareForge. SoftwareForge hosts
open source and community software projects within the DoD.
If public availability it not an option, SoftwareForge may be a
more secure alternative.

About the Author

Matthew Kennedy is a professor of
software engineering at the Defense
Acquisition University. He served
in the U.S. Air Force as a network
intelligence analyst and he has
more than 10 years of experience
in information technology. He has
a bachelor’s and master’s degree in
computer science.

Th is article fi rst appeared in Defense AT&L, July-August 2010.

Data & Analysis Center for Software (DACS) 15

Open Source Software Is Commercial
By Dr. David A. Wheeler

N early all publicly-available open source software
(OSS) is commercial software. Unfortunately,
many government officials and contractors fail

to understand this. This misunderstanding can result in
higher costs, longer delivery times, and reduced quality for
government systems. There are also legal risks: government
officials and contractors who do not understand this, yet
influence the selection or use of software, will probably fail to
comply with U.S. law and regulations on commercial software.
Finally, such government officials and contractors do not
understand the modern commercial software marketplace, and
thus are destined to make poor decisions about it.

This article explains why it is important to understand that
OSS is commercial; explains why nearly all OSS is commercial
software per U.S. law, regulation, and DoD policy; and shows
why open source software is commercial even beyond the
“letter of the law” because it has all the usual earmarks of
commercial practice. But first, we must define the term OSS.

Defining Open Source Software
As the official DoD policy on OSS states, “Open Source

Software is software for which the human-readable source code is
available for use, study, reuse, modification, enhancement, and
redistribution by the users of that software” [DoD2009]. Other
definitions for OSS (also called Free Software, Free/Libre/OSS,
and FLOSS) include the Free Software Foundations’ “Free
Software Definition” and the Open Source Institute’s “Open
Source Definition.” Successful OSS is typically co-developed
and maintained by people from multiple organizations working
together. For general OSS information, see “Open Source
Software (OSS) in U.S. Government Acquisitions” (Software
Tech News, Vol. 10, No. 2) and [Wheeler2007].

Why is this important?
Acquirers (both government and contractors) risk much by

failing to understand that OSS is commercial.

First, they risk ignoring the best possible alternatives
that they are required by law to consider. As [DoD2009]
attachment 2 part 2 notes, “Executive agencies, including
the Department of Defense, are required to conduct market
research when preparing for the procurement of property or

services by 41 USC Sec. 253a … (see also FAR 10.001…).
Market research for software should include OSS when it may
meet mission needs.” The Federal Acquisition Regulations
(FAR) part 12 requires agencies to “Conduct market research
to determine whether commercial items or nondevelopmental
items are available that could meet the agency’s requirements.”

Second, they risk failing to comply with U.S. law and
regulations that require preference for commercial software
(see 10 USC 2377) and a maximal use of commercial software
(where practicable). FAR part 12 states that agencies must
“(b) Acquire commercial items or nondevelopmental items
when they are available to meet the needs of the agency; and
(c) Require prime contractors and subcontractors at all tiers to
incorporate, to the maximum extent practicable, commercial
items or nondevelopmental items as components of items
supplied to the agency.”

Finally, there is the risk of paralysis. There are many
regulations and local rules about commercial items. Someone
who doesn’t realize that nearly all OSS is commercial won’t
know what rules to follow, and can become effectively
paralyzed. Once they realize that nearly all OSS is commercial,
they can usually follow the well-understood rules for
commercial software.

OSS is commercial by law, regulation, and policy
The DoD policy on OSS [DoD2009] attachment 2

part 2 says, “In almost all cases, OSS meets the definition
of ‘commercial computer software’ and shall be given
appropriate statutory preference in accordance with 10 USC
2377 (reference (b)) (see also FAR 2.101(b), 12.000, 12.101
(reference (c)); and DFARS 212.212, and 252.227-7014(a)
(1) (reference (d))).” We can confirm this by examining U.S.
law and regulation.

U.S. law governing federal procurement (specifically 41 USC
403) formally defines the term “commercial item” (underlining
added) as:

 “(A) Any item, other than real property, that is of a type customarily
used by the general public or by nongovernmental entities for
purposes other than governmental purposes, and that—

STN 14-1 February 2011: DoD and Open Source Software16

OPEN SOURCE SOFTWARE IS COMMERCIAL (CONT.)

(i) has been sold, leased, or licensed to the general public; or

(ii) has been offered for sale, lease, or license to the general public.

 (B) Any item that evolved from an item described in subparagraph
(A) through advances in technology or performance and that
is not yet available in the commercial marketplace, but will be
available in the commercial marketplace in time to satisfy the
delivery requirements under a Federal Government solicitation.

(C) Any item that, but for—

 (i) modifications of a type customarily available in the
commercial marketplace, or

 (ii) minor modifications made to meet Federal Government
requirements, would satisfy the
criteria in subparagraph (A) or
(B).

 (D) Any combination of items
meeting the requirements of
subparagraph (A), (B), (C), or
(E) that are of a type customarily
combined and sold in combination
to the general public.

 (E) In s t a l l a t i o n s e r v i c e s ,
maintenance services, repair
services, training services, and other
services if—

 (i) the services are procured for
support of an item referred to in
subparagraph (A), (B), (C), or
(D), regardless of whether such
services are provided by the same
source or at the same time as the
item; and

 (ii) the source of the services provides similar services
contemporaneously to the general public under terms and
conditions similar to those offered to the Federal Government.

 (F) Services offered and sold competitively, in substantial
quantities, in the commercial marketplace based on established
catalog or market prices for specific tasks performed or specific
outcomes to be achieved and under standard commercial terms
and conditions.

 (G) Any item, combination of items, or service referred to in
subparagraphs (A) through (F) notwithstanding the fact that the
item, combination of items, or service is transferred between or
among separate divisions, subsidiaries, or affiliates of a contractor.

 (H) A nondevelopmental item, if the procuring agency determines,
in accordance with conditions set forth in the Federal Acquisition
Regulation, that the item was developed exclusively at private
expense and has been sold in substantial quantities, on a
competitive basis, to multiple State and local governments.”

This definition in U.S. law is reflected in the Federal
Acquisition Regulation (FAR) FAR 2.101, as well as the DoD
FAR Supplement (DFARS) 212.212 and 252.227-7014(a)(1).
The DFARS definition is shorter, but for our purposes has the
same basic thrust.

Thus, OSS that has been released and licensed to the
general public, and has at least one non-government use, is
by definition commercial. Note that OSS that implements
government functions, or was originally developed by the
government, is still commercial as long as it meets this
definition (e.g., it is licensed to the public and used for at
least one non-government purpose). If the OSS isn’t released
yet, but will be in time, it is still commercial (this enables
OSS “bounty systems”). The government can often pay for
modifications to OSS (e.g., to address government-specific
needs) and still consider the result commercial. Related services

Data & Analysis Center for Software (DACS) 17

OPEN SOURCE SOFTWARE IS COMMERCIAL (CONT.)

(e.g., installation, repair, and training), even if they’re from
a different source than the original author, are also typically
commercial per this definition.

Note that software often ends up being used for non-government
purposes, even if it was originally developed for a government
purpose. Software developers often work to make their software
more general-purpose, so that they have more potential
users. In addition, many organizations perform functions
that are similar
t o f u n c t i o n s
performed by the
government. For
example, many
g o v e r n m e n t s
need integrated library systems, but many other non-
government organizations (such as large universities and
companies) need them also.

DoD’s “Commercial Item Handbook” (November 2001)
explains that the broadness of this government definition
of “commercial item” is intentional, because it “enables the
Government to take greater advantage of the commercial
marketplace.” The DoD policy memo “Commercial
Acquisitions” (Jan. 5, 2001), Appendix A in the handbook,
explains that the benefits of commercial item acquisition
include “increased competition; use of market and catalog
prices; and access to leading edge technology and ‘non-
traditional’ business segments.” Note that those who created
these definitions and policies anticipated that there will be
changes in the commercial market, including “non-traditional
business segments.”

This interpretation is supported by documents other
than [DoD2009]. Department of the Navy memorandum
“Department of the Navy Open Source Software Guidance”
(signed June 5, 2007) was released specifically to make it clear
that OSS is commercial. It says that the Navy will “treat OSS
as [Commercial Off-the-Shelf (COTS)] when it meets the
definition of a commercial item.” OMB Memo M-03-14
“Reducing Cost and Improving Quality in Federal Purchases
of Commercial Software” is about commercial software, and it
specifically says that its SmartBUY initiative will include open
source software support.

OSS is commercially developed and supported
OSS is commercial, even if we ignore US law and regulation.

The New York Times Everyday Dictionary (1982) says that
“commercial” means either (a) “oriented to profit-making,” or

(b) “of, pertaining to, or suitable for … [dealings, the buying
and selling of commodities, or trade].” Let’s start with the
first definition.

Many for-profit companies make some or all of their money
developing and/or supporting OSS, including Red Hat, IBM,
Oracle, and others. InformationWeek’s David DeJean, in his
article, “Is Open-Source A Business Model? $500 Million Says
It Is,” notes that Citrix paid $500 million for XenSource (maker

of the OSS Xen
hypervisor). IBM
says that in 2001
it invested $1
billion in Linux,
and that by 2002

it had already almost completely recouped that investment,
suggesting some astounding returns on investment. InfoWorld’s
Savio Rodrigues reported on July 10, 2007, that venture
capitalists invested $1.44 billion in OSS from 2001 through
2006. Someone who uses “commercial” as the opposite of
OSS will have trouble explaining why Red Hat is listed in the
New York Stock Exchange (for example), since they focus on
developing and releasing OSS.

For-profit organizations use or support OSS for many
different reasons. Some give away the OSS and sell the support
(such as training, customization, and support/ maintenance).
Many use and support OSS as a support infrastructure for the
product or service they actually sell, i.e., for cost avoidance by
cost sharing. Many for-profit organizations have realized the
value of “commoditizing your complements,” that is, you’ll
sell more of your product if things related to it (that you don’t
sell) are cheaper.

Once you use the second broader definition of “commercial,”
it is even clearer that OSS is commercial. Economists often
emphasize the difference between wealth and money. Some
OSS projects attempt to earn money (directly or indirectly),
but nearly all OSS projects attempt to create wealth in the form
of improved software. They attempt to create wealth via trade
and dealings ... a fundamentally commercial notion.

OSS developers give their users many more rights than
proprietary products do, typically with the expectation that
others are thus likely to contribute back to the project. Thus,
most non-profit OSS projects are actually trying to achieve
financial gain – it just happens that they are trying to receive
gains of additional or improved software instead of money.
As Linux kernel creator Linus Torvalds noted in a 2003 letter

“The lack of money changing hands in open source licensing should
not be presumed to mean that there is no economic consideration”[]

STN 14-1 February 2011: DoD and Open Source Software18

to SCO, the U.S. Code Title 17, Section 101 (the law that
creates and defines copyrights in the U.S.) explicitly defines
the term “financial gain” as including “receipt, or expectation
of receipt, of anything of value, including the receipt of other
copyrighted works.” Thus, while OSS projects may not receive
money directly, they typically do receive something of value in
return. Ganesh Prasad’s “How Does the Capitalist View Open
Source?” captured this concept nicely in May 2001.

The U.S. Court of Appeals for the Federal Circuit formally
stated that there are economic considerations with OSS. In
their ruling on Jacobsen v. Katzer (August 13, 2008), they said
that “Open Source software projects invite computer programmers
from around the world to view software code and make changes
and improvements to it. Through such collaboration, software
programs can often be written and debugged faster and at lower
cost than if the copyright holder were required to do all of the
work independently. In exchange and in consideration for this
collaborative work, the copyright holder permits users to copy,
modify and distribute the software code subject to conditions that
serve to protect downstream users and to keep the code accessible...
Traditionally, copyright owners sold their copyrighted material in
exchange for money. The lack of money changing hands in open
source licensing should not be presumed to mean that there is no
economic consideration, however. There are substantial benefits,
including economic benefits, to the creation and distribution of
copyrighted works under public licenses that range far beyond
traditional license royalties. For example, program creators may
generate market share for their programs by providing certain
components free of charge. Similarly, a programmer or company
may increase its national or international reputation by incubating
open source projects. Improvement to a product can come rapidly
and free of charge from an expert not even known to the copyright
holder. The Eleventh Circuit has recognized the economic motives
inherent in public licenses, even where profit is not immediate....”

Also, note that many OSS developers are now well-paid for
their work. Consulting company Bluewolf found that “the
advancement of open source software is triggering an increasing
need for specialized application developers ... higher-end, more
complex application development proves difficult to complete
overseas ... The rise of open source software in application
development puts developers with a specialization in those
technologies in a position to ask for a 30 or 40 percent pay
increase...” [Eddy2008]. Provably 70% of all Linux kernel
development is by developers who are being paid to do this
work [Corbet2010], and the actual figure is probably much
higher.

Alternatives
The most common antonym for OSS is “proprietary

software;” other terms include “closed source,” “non-Free,”
“non-OSS,” and “non-FLOSS.” I tend to use “proprietary
software” as the antonym, simply because it seems to be the
most widely used and thus better understood. Do not call
OSS non-commercial, because nearly all OSS is commercial.

Conclusions
It’s time to end the nonsense. OSS is practically always

commercial, which means that there are two major types of
commercial software: proprietary software and OSS. Terms
like “proprietary software” or “closed source” are plausible
antonyms of OSS, but “commercial” is absurd as an antonym,
and phrases like “commercial or OSS” make no sense.

This has real-world implications. In particular, government
acquisitions (including work performed by contractors) must
include OSS in their market research and must carefully
consider OSS candidates.

Bibliography

[Corbet2010] Corbet, et al. December 2010. “Linux Kernel
Development” http://www.linuxfoundation.org/docs/
lf_linux_kernel_development_2010.pdf.

[DoD2009] DoD CIO. 2009-10-19. “Clarifying Guidance
Regarding Open Source Software (OSS)” http://cio-nii.
defense.gov/sites/oss/2009OSS.pdf.

[Eddy2008] Eddy, Nathan. 2008-02-26 “Report: Open
Source Adoption Increases App Dev Pay,” ChannelWeb.

[Wheeler2007] Wheeler, David A. 2007-04-16, “Why OSS/
FS? Look at the Numbers!” http://www.dwheeler.com/
oss_fs_why.html.

[Wheeler2009] Wheeler, David A. “Free-Libre / Open
Source Software (FLOSS) is Commercial Software,”
revised 2009-02-03. http://www.dwheeler.com/ essays/
commercial-floss.html. Summary published as “F/LOSS
is Commercial Software,” Open Source Business Resource,
Feb. 2009, pp. 25-33.

This article is based on [Wheeler2009].

The publication of this paper does not indicate endorsement by
the Department of Defense or IDA, nor should the contents be
construed as reflecting the official positions of those organizations.

Data & Analysis Center for Software (DACS) 19

Implementing Open Standards in Open Source
By Lawrence Rosen

Industry standards morph into functional computer
software. I use the word “morph” on purpose to avoid any
term that can be found in US copyright or patent law.

Morphing is a special effect in motion pictures and animation
to turn one image into another through a seamless transition.
Wikipedia shows an image of George W. Bush morphing
into Arnold Schwarzenegger, and so too the morphing of
an industry standard into software can result in something
that looks entirely different at an expressive level and that
potentially does useful things.

In the case of software industry standards, morphing
transforms a written specification into working code through
a mental process conducted internally by programmers
and engineers. The end result – functional software – is a
created outcome of human intellect that starts with a written
specification and ends with a working implementation.

For attorneys, software specifications are unusual beasts. A
specification may be the description of something patentable,
but it is not itself patentable. Only an implementation of a
specification, something that can be made, used, or sold, may
be subject to patent infringement lawsuits (35 USC 271).
Likewise, a specification itself can also be copyrighted, although
the copyright does not extend to any idea, procedure, process,
system, method of operation, concept, principle, or discovery,
regardless of the form in which it is described, explained,
illustrated, or embodied in the specification (17 USC 102(b)).
The rights to intellectual property in an industry specification
(and thereby perhaps control over its intellectual content) are
thus subject to some difficult legal questions with uncertain
answers.

This topic gained added relevancy recently because of the
patent and copyright infringement lawsuit by Oracle against
Google relating to Java. We have been led to believe that
Java is an industry standard for a programming language. In
compliance with the rules of the Java Community Process
(“JCP”), the Java community develops final specifications for
technology to be included in the Java platform and publishes
free implementations of those specifications under open
source licenses. There are currently more than 300 published
specifications for the Java language. There is much free and
open source software implemented in compliance with these

Java specifications. Many companies, individuals, and non-
profit foundations (including the Apache Software Foundation
of which I am a member) participate in the JCP with the goal
that those specifications be available to all free of charge. The
Oracle v. Google lawsuit has placed a patent and copyright cloud
on Java specifications and software.

Specifications are different from software, but they are
weapons in the competitive software wars and they are subject
to legal control by contract and by law. Companies try to
control specifications because they want to control software
that implements those specifications. This is often incompatible
with the freedom promised by open source principles that
allow anyone to create and distribute copies and derivative
works without restriction.

This article explores ways that are available to compromise
that incompatibility and to make open standards work for
open source.

Copyright on Industry Standards: Does Implemen-
tation Create a Derivative Work?

The standard of proof for copyright infringement includes
the element of “substantial similarity.” Because copyright
protects expression, an infringing work must resemble the
expression of the original, not merely its underlying ideas and
concepts. If they do not look alike, it will be difficult to prove
that an implementation is a derivative work of a specification.
In the SCO v. IBM litigation1, for example, the plaintiff was
ultimately unable to identify any specific code in Linux that
was derivative of its own UNIX software, even though they
were functionally similar.

Often a specification and its implementation are very
dissimilar. Specifications that contain English words describing
functionality are intended to be implemented in C++ or Java or
some other programming language, and the natural language
description – certainly to the untrained eye – doesn’t resemble

1 Editor’s Note: On March 6, 2003, the SCO Group (formerly known as Caldera
Systems) filed a $1 billion lawsuit in the US against IBM for allegedly “devaluing”
its version of the UNIX operating system. The amount of alleged damages was later
increased to $3 billion, and then $5 billion. SCO claimed that IBM had, without
authorization, contributed SCO’s intellectual property to the codebase of the open
source, Unix-like Linux operating system. Source: Wikipedia

STN 14-1 February 2011: DoD and Open Source Software20

IMPLEMENTING OPEN STANDARDS IN OPEN SOURCE (CONT.)

the resulting code in the slightest. The judges and juries that
will determine copyright infringement won’t be able without
expert advice to determine the substantial similarity of highly
technical expressive works of software.

Some software experts view this dissimilarity of expression
between specification and software code as a technical
disadvantage, and so they are trying to create specifications
that are their own software implementations. In the HTML5
project, for example, which is creating standards for structuring
and presenting content in browsers on the World Wide Web,
the drafters are experimenting with a specification technique
that replaces specification text with public domain reference
implementations in terms of an abstract state machine, in an
attempt to improve compatibility by avoiding the imperfect
conversion of English to source code. Implementers are
encouraged to copy specification text as software. In these cases,
at least, a software implementation is obviously a derivative
work of the specification, and thus an infringement unless
licensed.

Regardless of the style of specification writing and the
programming language, it is to nobody’s advantage to argue
in court whether an implementation is a derivative work
of the specification. A legal argument about whether an
implementation is a derivative work, no matter how convincing,
is not as convincing as a written license that expressly authorizes
those derivative works. And so implementers seek licenses and
standards organizations offer them. Standards bodies have

devised their copyright licensing policies with the expectation
that software implementations will be derivative works of their
specifications.

Because software implementations will often be distributed
under open source licenses, the compatibility of specification
copyright licenses with open source rules becomes critical.
The Open Web Foundation (OWF), in its specification
license, addresses the copyright issue for software specifications
succinctly and directly:

I grant to you a perpetual (for the duration of the applicable
copyright), worldwide, non-exclusive, no-charge, royalty-free,
copyright license, without any obligation for accounting to me, to
reproduce, prepare derivative works of, publicly display, publicly
perform, sublicense, distribute, and implement the Specification
to the full extent of my copyright interest in the Specification.

Note that the copyright license here is “to the full extent
of my copyright interest,” thus effectively ignoring the
question posed in the title of this section. Note also that the
broad copyright grant to implement the Specification is fully
compatible with all open source (and proprietary) licenses.

That copyright grant, however, is not satisfactory to some
standards organizations. It goes too far with respect to
allowing derivative works of a specification as a specification.
These standards organizations seek to protect the purity
of their specifications by forbidding other standards

“Innovation without protection is philanthropy”

 - Mark Blaxill, The Invisible Edge, 2009

Data & Analysis Center for Software (DACS) 21

organizations to take over those specifications and modify
them. In colloquial terms, and as they frequently justify this
restriction, these organizations wish to prevent the “forking”
of their specifications that might result in incompatible
implementations.

This is a reasonable business and technical concern for a
standards organization. Anyone who witnessed the early years
of the browser software wars will remember how functionally
incompatible browsers inhibited the development of advanced
websites, and allowed commercial competition rather than
technical benefits to dictate browser functionality. No software
implementer wants to repeat that experience.

Compatibility requirements, however, are anathema to open
source implementers. A requirement that all implementations
function in a particular way is contrary to every open source
license that guarantees complete freedom to create derivative
works. The desire of standards organizations to prevent forking
of open standards contradicts the requirement of open source
licenses that permit any derivative works.

This problem has recently been the subject of heated
discussion in W3C relating to the new HTML5 specification.
Nearly 80% of the W3C members responding to a survey
said they do not want W3C to permit forking of W3C
specifications, but they also overwhelmingly say that they
want to encourage implementation of any open source
software. By way of compromise, one proposal was for a
new HTML5 license to allow software derivative works but
to forbid specification derivative works. The Free Software
Foundation, however, has argued that this restriction means
that the proposed license is incompatible with the GPL. As
this paper is being written, no final decision has been made
about this license.

This problem was addressed by IETF in yet another way.
They require specification writers to distinguish between “text”

and “code.” The IETF copyright license allows derivative works
of the code but not the text portions of its specifications. Thus
implementers may use the code portions, but if they seek to
document those code portions they are not allowed to create
derivative works of the IETF specification text. This rather
arbitrary way of addressing copyright law issues of derivative
works of specifications is based on distinctions between text
and code that are not found in copyright law or in computer
science. I do not believe this distinction is enforceable
practically.

The Oracle v. Google lawsuit presents another aspect of
this derivative work copyright problem. Oracle asserts in its
complaint that Google has infringed Oracle’s Java copyrights
(presumably relating to the Java specifications, although the
complaint in that case is not clear). Java specifications are
published under a license that requires implementers to validate
compliance with Java specifications using test compatibility
kit (TCK) software licensed by commercial companies with
contractual restrictions on the types of software derivative
works that can be implemented. As such, it is incompatible
with the requirements of the Apache License under which
the Apache Software Foundation, and Google, publish their
software. The Apache Software Foundation objected publicly
to Sun, the Java specification steward, when it first imposed
these contractual restrictions on the kinds of software derivative
works that can be created if open source implementers license
the Java TCK; now Oracle is the Java steward, and the concern
has been reanimated by this recent litigation.

This question of whether software is a derivative work of a
specification has thus become more important recently. Indeed,
there may be no single answer that would satisfy those who
create and seek to protect standards and those who implement
those standards under open source licenses. Agreement on
specification licenses will require a degree of compromise over
copyrights that neither commercial companies nor the open
source community have yet achieved.

IMPLEMENTING OPEN STANDARDS IN OPEN SOURCE (CONT.)

At the DACS we are always pleased to hear from our Software Tech News
magazine readers. We are very interested in your suggestions, compliments,
complaints, or questions. Please visit our website softwaretechnews.com,
and fill out the survey form. If you provide us with your contact information,
we will be able to reach you to answer any questions.

we like your feedback

STN 14-1 February 2011: DoD and Open Source Software22

Patents on Industry Standards: Can a Specification
Infringe a Patent?

Copyrights are not the only intellectual property problem
besetting software standards. Far more difficult are the effects
of patents on the software ecosystem, because copyrights
encumber only derivative works but patents can encumber
any implementation. A clean room implementation of a
specification will avoid copyright infringement -- but it is not
so easy to avoid patent infringement.

Patents are not a problem for specification writers, but rather
for implementers. Anyone is free to write a description of how
to perform a process or method – indeed the patent system
requires the open publication of just such a specification when
a patent is granted. But when that specification is transformed
into functioning software and distributed for actual use by
actual people and companies, those users may be patent
infringers. In the proprietary software world such risks are
commonly borne by the vendors of software products with
offers of limited warranties and indemnity, usually capped at
reasonable dollar limits. But with free and open source software
that is distributed without warranties or indemnities, the risk of
patent infringement when using implementations of standard
specifications is borne by the user.

Note that this patent risk is in practice quite low. While
hypothetical situations can be litigated easily in the mind, there
have been no notable patent infringement lawsuits in U.S.
federal court over software standards implemented in open
source software. When major software companies cooperate
openly to develop industry standards in organizations like
W3C and IETF, few of them have much incentive to demand
royalties or impose burdens on competing implementations.
Some standards, of course, such as those for music and movie
distributions on the web, are proprietary and licensed for a
fee. Open source projects have typically refused to implement
those encumbered standards, which may partly explain the
dearth of infringement lawsuits. But when the stated goal
of the standards setting organization is a royalty-free patent
license for open source implementations, litigation over such
patents is unnecessary.

The Oracle v. Google case is a recent exception. As I
mentioned earlier in the copyright context, this lawsuit relates
to Java software. Java is an industry standard for a popular
programming language, and there are several proprietary and
open source implementations of that language and its related
programming libraries. Given the widespread reliance of
the software industry on Java, it was a surprise when Oracle

asserted a number of its patents (acquired in its acquisition of
Sun) against Google, purportedly for Google’s implementation
of the Android open source operating system.

It is far too early in this litigation to comment on the merits
of the case, but the effect of the Oracle v. Google lawsuit
has already been to put a cloud on the Java standard. This
litigation is likely to discover some hitherto unexplored areas
of software competition practices that are problematic given
the explicit promises and community expectations of the
parties to the Java Community Process under which Java was
developed. In particular, the Apache Software Foundation
has already complained about the JCP requirement that
implementers acquire and pass a Test Compatibility Kit
(TCK) before receiving Java patent licenses from Oracle
(Sun), when those TCK licenses expressly prohibit certain
kinds of implementations and derivative works. That TCK
licensing practice for industry standards is not compatible with
open source, and those contractual restrictions on the use of
specifications have not be accepted by Apache.

Traditional standards organizations have finessed the
patent problem by requiring authors of specifications to
offer Reasonable and Non-Discriminatory (RAND) licenses.
RAND doesn’t mean “free”, however, and it doesn’t mean
“without encumbering conditions,” and so RAND promises
are of little use to open source implementers. Fortunately,
because open source implementations have become important
as validations of open standards, most software standards
are now actually published under RAND-Z, or zero-priced,
RAND licensing terms. This promise of reasonable and non-
discriminatory licensing terms is often made but not usually
put into explicit words. For example, most contributions to
IETF are accompanied by RAND promises, but actual licenses
are not published anywhere on the IETF website. Nor does
the W3C royalty-free patent policy require the publication
of an actual patent license, although members of W3C are
committed by their membership agreement to grant such a
license if asked. Nobody asks.

Open source licensing practices no longer tolerate such
ambiguities. Contributors to mature open source projects
sign Contributor License Agreements to provide written
confirmation of their copyright and patent promises. The Open
Web Foundation (OWF) is drafting such explicit agreements
for industry standards to mitigate the risks of patent litigation.

One important difference between the OWF proposal and
traditional industry standard practices is in the identification

IMPLEMENTING OPEN STANDARDS IN OPEN SOURCE (CONT.)

of the patent claims being licensed for free. In most standards
organizations the patent grant is to “Necessary Claims” –
meaning those patent claims that are necessary to implement
the specifi cation without infringing. Actual terms diff er;
sometimes the rule is “actual technical impossibility” of
implementation without a patent license and sometimes merely
“fi nancial or technical impracticality” of implementation unless
a patent license is available. Either way, this Necessary Claims
language means that if there are multiple ways of implementing
a specifi cation, then no patent claim is a Necessary Claim.

OWF takes a more generous view of patent licensing for
industry standards. Its patent grant says simply:

Th e Promise. I, on behalf of myself and my successors in interest
and assigns, irrevocably promise not to assert my Granted Claims
against you for your Permitted Uses, subject to the following.

Th e OWF agreements then defi ne “Granted Claims” simply
as those claims that are infringed by “Permitted Uses”:

“Permitted Uses” means making, using, selling, off ering for sale,
importing or distributing any implementation of the Specifi cation
1) only to the extent it implements the Specifi cation and 2) so
long as all required portions of the Specifi cation are implemented.
Permitted Uses do not extend to any portion of an implementation
that is not included in the Specifi cation.

Th is means that, so long as he is implementing the required
portions of a specifi cation, and even if there are multiple ways
of implementing that specifi cation, an implementer is free to
choose a patented method if it is better or more effi cient. Th e
license extends only to the desirable goal of implementing the
specifi cation, however, and it is not a license for all uses of the
Granted Claims.

To protect patent owners from unanticipated grants of their
patents, as well as to protect implementers from game-playing
by patent owners, the OWF agreements defi ne Granted Claims
as follows:

“Granted Claims” are those patent claims that I own or control,
including those patent claims I acquire or control after the Date
below, that are infringed by Permitted Uses. Granted Claims
include only those claims that are infringed by the implementation
of any portions of the Specifi cation where the Specifi cation describes
the functionality causing the infringement in detail and does not
merely reference the functionality causing the infringement.

Under the OWF, patent owners are thus able to read a
Specifi cation to determine which of their patents will be licensed
to implementers, without needing to determine whether their
patent claims are in some vague sense Necessary Claims because
there are no alternatives. And implementers are able to read
a Specifi cation and, as long as they are implementing all the
required portions of the Specifi cation, they needn’t worry about
patent litigation for that implementation.

Conclusions and Predictions
It is not yet known whether the OWF provisions for patent

licensing will overcome the resistance to change for IP policies
in standards organizations in order to make both copyrights
and patents freely available to open source implementers of
open standards. Nor is it known what eff ect the Oracle v.
Google lawsuit will have on the Java standards and the future
expectations of implementers to be free to create software
based on open standards. Intellectual property attorneys live
in interesting times.

In a way, this is very much like the challenges facing
Creative Commons when it found chaos and uncertainty
in the licensing of music and art and fi lm for free use by all.
Open standards are equally fundamental to the ways we live.
Th at is why implementers ought to be free of copyright and
patent restrictions to create the open source software on which
our world depends. And that is also why attorneys should
understand carefully the intellectual property obligations of
contributors to and users of open standards.

About the Author

Lawrence Rosen is partner of Rosenlaw
& Einschlag (www.rosenlaw.com), a
technology law fi rm that specializes in
intellectual property protection, licensing
and business transactions for technology
companies. He currently advises many
open source companies and non-profi t
open source projects, including as member
of and counsel to Apache Software

Foundation and as a member of the board of directors of Open
Web Foundation. He is also serving at W3C on the Patents
and Standards Interest Group and on the New Standards Task
Force. Larry’s book, Open Source Licensing: Software Freedom
and Intellectual Property Law, was published by Prentice Hall
in 2004. He is a Lecturer in Law at Stanford Law School.

Copyright © 2010 Lawrence Rosen. Licensed under the Academic
Free License 3.0.

STN 14-1 February 2011: DoD and Open Source Software24

Te
st

Tr
ac

k®
 P

ro

Te
st

Tr
ac

k®
 T

CM

Te
st

Tr
ac

k®
 S

tu
di

o
Su

rr
ou

nd
 S

CM
®

Se
ap

in
e

CM
®

Q
A

W
iz

ar
d®

 P
ro

Iss
ue

 M
an

ag
em

en
t

Te
st

 C
as

e
M

an
ag

em
en

t
Te

st
 P

la
nn

in
g

&
Tr

ac
ki

ng

Co
nfi

gu
ra

tio
n

M
an

ag
em

en
t

Ch
an

ge
 M

an
ag

em
en

t
Au

to
m

at
ed

 Te
st

in
g

www.seapine.com/gsa
Satisfy your quality obsession.[[

© 2009 Seapine Software, Inc. All rights reserved.

Satisfy Your Quality Obsession
Software quality and reliability are mission critical. The size, pervasiveness, and complexity of
today’s software can push your delivery dates and budgets to the edge. Streamline communication,
improve traceability, achieve compliance, and deliver quality products with Seapine Software’s
scalable, feature-rich application lifecycle management solutions:

•	 TestTrack Pro—Development workflow and issue management
•	 TestTrack TCM—Test case planning and tracking
•	 Surround SCM—Software configuration management
• QA Wizard Pro—Automated functional and regression testing

Designed for the most demanding software development and quality assurance environments,
Seapine’s flexible cross-platform solutions adapt to the way your team works, delivering maximum
productivity and saving you significant time and money.

Visit www.seapine.com/gsa

GSA Schedule 70 Contract GS-35F-0168U

Th is is a paid advertisement.
Data & Analysis Center for Software (DACS) 25

Running Open Technology Development Projects
By John Scott, Dr. David A. Wheeler, Mark Lucas, and J.C. Herz

How to get started” is a question continually asked.
This article lays out the basic framework for running
an open technology development (OTD) military

focused project. The first section describes how to establish an
OTD program once a project proposal has been accepted. The
next sections discuss establishing a technical infrastructure for
collaboration, communication issues, technical management/
technical criteria, and continuous delivery. Much more
information on how to do this from an open source software
(OSS) project perspective can be found in chapter 2 of
[Fogel2009].

Step 1: Determine reuse options
First, search for existing OSS projects that have relevant

functionality. A simple web search of the string “open source
software” plus a desired capability will often turn up something
close to what you need. Also review OSS repositories sites
such as http://www.sourceforge.net, http://www.freshmeat.
net, http://www.github.com, http://directory.fsf.org and
http://code.google.com. Even if there is nothing available to
use directly, there might be piece-parts that can be integrated
or useful ideas.

Opportunistic adoption of OSS is important because
technological innovation is primarily occurring on the
unclassified internet, not within the military sphere. Most
of the piece-parts for any given project are already out there,
and there is an expanding wave front of OSS software that can
rapidly advance the needs of government projects. Careful
evaluation, selection, and participation in these external
projects is the most effective way to evolve capabilities over the
life cycle of a government program. Existing Government Off
The Shelf (GOTS) software may quickly become obsolete once
there is a public Commercial Off The Shelf (COTS) project
(including an OSS project) with the same goal.

If you have software that was previously developed as part
of a government contract, determine if you have sufficient
intellectual rights to release or transition the software as an
OTD project. Many government programs have existing
technology that was originally funded by the government. If
the intellectual rights over those technologies is inadequate
or cannot be determined, the government should consider
negotiating with the appropriate integrators/vendors to release

the source code under less restrictive data rights sufficient for
an Open GOTS (OGOTS) or OSS project. An easy way
to do this is to simply fund the conversion process for the
contractor(s).

Step 2: Identify the Projects to be Established
Given the reuse options, identify what new projects are

necessary and which existing projects need to be transitioned
to OTD. In some cases, the “new project” may be a project
to extend some existing OTD project and get that extension
integrated into the original project. Where possible, split up
the project into several smaller projects with clear interfaces.
These smaller projects may be divided according to various
criteria, including the likelihood of reuse (to maximize the
number of participants in at least some of the projects) and the
need to limit access (classified or export-controlled modules
may need to be separated from other components, e.g., by
creating an unclassified “framework” into which controlled
“plug-ins” can be placed).

Name each project so that is not easily confused with other
projects. It should be pronounceable and easy to find on a
web search (ideally, it would be the only result from a search;
certainly avoid unsearchable names like “the” or “why”).

Each new project (including any existing project transitioning
to OTD) needs a statement of intent that references the
OTD software maintenance philosophy. As recommended
in [Fogel2009] “the mission statement should be concrete,
limiting, and above all, short.” The mission statement
should make it clear that the goal is to use open development
principles (e.g. avoiding lock-in to a single supplier) and what
the resulting products should do. Here’s an example of a good
one, from http://www.openoffice.org:

To create, as a community, the leading
international office suite that will run on
all major platforms and provide access to
all functionality and data through open-
component based APIs and an XML-based
file format.

In a DoD project, the software maintenance philosophy

“

STN 14-1 February 2011: DoD and Open Source Software26

RUNNING OPEN TECHNOLOGY DEVELOPMENT PROJECTS (CONT.)

statement might reference DFARS 227.7203-2 (“Acquisition
of noncommercial computer software and computer software
documentation”), and in particular the text at DFARS
227.7203-2(b)(1) (bold and underlining added):

Data managers or other requirements
personnel are responsible for identifying the
Government’s minimum needs. In addition to
desired software performance, compatibility,
or other technical considerations, needs
determinations should consider such factors
as multiple site or shared use requirements,
whether the Government’s sof tware
maintenance philosophy will require the right
to modify or have third parties modify the
software, and any special computer software
documentation requirements.

Determine, for each project, whether it must be limited
to only DoD or general government access as an OGOTS
project. By default, projects should become COTS OSS
instead of OGOTS. In some cases (e.g., due to classification
or export control) a project must be limited to DoD or U.S.
government access. GOTS projects present a higher risk
than COTS projects, because by definition there are fewer
potential contributors (decreasing competition and potentially
increasing cost), and contractors (other than their copyright
owners) are disincentivized from using GOTS projects because
they cannot reuse those components or knowledge about them
in other commercially viable ways. In many cases it is possible
to split the project into two projects, one that is OSS (e.g.,
a “framework”) and one that is OGOTS (e.g., a “plug-in” to
the framework).

Step 3: Choose and Apply a Common License
Each project must have a clear and simple license that

enables legal collaboration. A license lays out the rights and
responsibilities of software developers and users. If the project
is to be an OSS project, be sure to choose a well-known pre-
existing OSS license, one that has already been widely certified
as being OSS. It should be General Public License (GPL)-
compatible, as the GPL is the most common OSS license. If
the software pre-exists, it is usually wise to include its previous
license as one of the options.

Step 4: Establish Governance
Projects that use OTD need to be governed. The governance

process for each project needs to encourage collaborative

development, but it must also allow the rejection of contributions
where warranted. The OTD governance process must enable
multiple organizations to work together to improve each
component undergoing shared development (including its
software, tests, and documentation), instead of re-developing
separate independent components with similar functionality.
Before discussing different governance models, it is important
to note that forkability is necessary, as described next.

Forkability: A fork is a competing project established using
a copy of an existing project’s software.

It is critically necessary that an OTD project be forkable.
That is, it must be possible to create a viable competing project
using a copy of the existing project’s software source code.
Creating a fork is similar to a call for a “vote of no confidence” in
a parliament. The fork creator is essentially asking developers
and users to stop supporting the original project, and support
the new forked project instead (supporting both projects is
typically impractical over time).

Forks can also occur because the existing community
doesn’t plan to include a feature set part of the community
deems important, reasons could include: support for a
different operating system or middleware or inclusion of
a new programming language. Whatever the reason, every
effort should be made to keep forked projects somewhat as
coordinated as possible.

Forkability is a necessary part of OTD governance. As long
as a project is forkable, project leadership will strive to be
responsive to users and developers. This is because if leadership
decisions are particularly egregious, a forked project can be
started under more responsive stewardship. Easy forkability
actually reduces the risk of a fork, because leadership will be
forced to listen to users and developers (because if they do not, a
viable fork will emerge). In addition, easy forkability increases
the likelihood of contributions; easy forkability provides
significant protection to would-be contributors, because if they
later disagree with project governance, they can create a fork.

Regardless of the governance model, the decision-maker(s)
must avoid making a decision between alternatives too soon.
If there is a disagreement, there may be a compromise or
alternative approach that would be better than the immediately-
obvious options. Therefore, decision-makers should try to get
parties to find those compromises and alternatives. However, if
a reasonable compromise cannot be found and a decision must
be made, the decision-maker(s) should make that decision

Data & Analysis Center for Software (DACS) 27

RUNNING OPEN TECHNOLOGY DEVELOPMENT PROJECTS (CONT.)

after listening to all sides. Th at decision should be announced
clearly, along with sound rationale. Th e decision-maker(s)
must also be willing to change a decision given important
new information, new options, or a change in circumstances.

A key to any governance approach is that the project must
be forkable. Any governance model can eventually fail if
the decision-makers have no need respond to others. If the
project is forkable, then the leadership (regardless of the
governance model) must in the end respect the needs of users
and developers. More information can be found in [Fogel2009]
chapter 4 and [Bacon2010] chapter 8.

 Step 5: Establish Collaboration
Establishing collaboration isn’t the same as creating a one-

way communications strategy. Collaboration involves an easy
interchange of ideas among many perspectives (including
industry, academia and other government agencies offi ces and
labs) to produce a better result than any one of them could
have achieved separately.

When opening a formerly closed project, be sensitive to
the magnitude of the change. Ensure that all its existing
developers understand that a big change is coming. Explain
it, tell them that the initial discomfort is perfectly normal, and
reassure them that it’s going to get better. Work to counter
lapses into private discussions between long-time developers,
and encourage their migration to community forums such as
mailing lists. [Fogel2009]

Since some people will struggle with the openness of an
OTD project, it is important to stress the need for openness.
Point to guidance such as the current administration guidelines
and mandates on transparency, and on the DoD 2009 memo
on open source software which mandates that software be
treated as data and shared appropriately. To quote the 2009
memo:

“Software source code and associated design
documents are “data” as defined by DoD
Directive 8320.02 (reference (h)), and therefore
shall be shared across the DoD as widely as
possible to support mission needs.”

Th ere are of course discussions that must be kept closed to
the public, such as company source selection and company
proprietary data. But every attempt should be made to open

up the software development process as much as possible.
To simplify governance, the preferred method is to use an
OSS license unless national interest dictates otherwise. Th e
government should also require contractors and software
integrators to organize their projects so that they are
continuously transparent and open to the government for
remote inspection.

 Step 6: Create Project Technical Direction
For each project, determine key technical issues, such as

which major components will be reused, what components the
system must interact with, how it will be implemented (such
as what implementation languages to use), what platforms it
must work on, and basic developer guidelines.

Each project should stress modularity. A modular system
is a system built from smaller interacting projects that can
be developed in parallel and individually replaced without
aff ecting other components. Modularity is key and simplifi es
technology and software IP reuse, eases and separates
classifi cation and export control issues, simplifi es management,
speeds deployment, reduces maintenance costs, and increases
agility. A great military reference to modularity can be found
at http://www.acq.osd.mil/osjtf/docsmemo.html. Well-known
design patterns and architectural patterns can be used to divide
problems into smaller components [Martin2000].

 Step 7: Announcing
When a project is established and presentable (not perfect),

or a signifi cant event such as a major release occurs, tell others
who would want to know. If you know of mailing lists where
an announcement of your project would be on-topic and of
interest, then post there, but be careful to make exactly one post
per forum and to direct people to your project’s own forums
for follow-up discussion. If there are related projects (e.g.,
ones that might likely use it or be impacted by it), be sure to
provide them the news, and invite them to post web links to
your project website. Post an update on Intellipedia and the
DoD Techipedia (this is especially important for OGOTS
projects, since it can be diffi cult to fi nd them if they are not
publicly known). If it is a public OSS project, submit such
announcements to freshmeat (http://freshmeat.net/).

 Continuously Review Steps 1-7
Steps 1-6 should are the start of a continuous process where

projects should constantly be cycling through the search for
new components, growing the community, maturing the
technologies and seeking to scale the size, heft and maturity

Continued on page 30

STN 14-1 February 2011: DoD and Open Source Software28

Affordable tools for improving reliability…Q
Quanterion Solutions in a team member of the operation of the Reliability Information Analysis Center (RIAC)

quanterion.com
(315)-732-0097/(877) 808-0097

SOLUTIONS INCORPORATED
QUANTERION

...the newest member of the Quanterion Automated Reliability Toolkit family...
Introducing...

Quanterion Automated Reliability Toolkit

Enhancing Reliability

+ indicates improved features or functions

Download for only $399

Q
uA

RT

Q
uA

RT
 P

RO

Q
uA

RT
 E

R

$99 $189 $399

G
en

er
al

 K
no

w
le

dg
e Reliability Advisor No Yes Yes

Reliability Program Cost No Yes Yes +

Reliability Imp rovement Cost No Yes Yes

Warranty Cost No Yes Yes

Statistical Distributions No Yes Yes +

Checklists No Yes Yes

Definitions Yes Yes Yes

Acronyms Yes Yes Yes

Co
nc

ep
t Reliability Potential Yes Yes Yes

Reliability Allocation No No Yes

Reliability Tailoring Yes Yes Yes

Reliability Approach Assessment No No Yes

 D
es

ig
n

A
na

ly
si

s Derating Yes Yes Yes

Thermal Design No Yes Yes

Failure Modes No Yes Yes +

FMECA Worksheets No No Yes

Material Durability Improvement No No Yes

Parts Count Analysis Yes Yes Yes

Software Reliability Prediction No No Yes

Redundancy Modeling Yes Yes Yes +

Reliability Adjustment Factors Yes Yes Yes

Interference Stress Strength Analysis No No Yes

Availability Calculator No No Yes

Te
st

in
g Benefit of Reliability No No Yes

Reliability Growth Testing - Duane Method Yes Yes Yes

Reliability Growth Testing - AMSAA-Crow Method No No Yes

Reliability Growth Testing - Crow Extended Method No No Yes

Reliability Demonstration Test Equal Risk RDT Yes Yes Yes

Reliability Demonstration Test Variable Risk RDT No No Yes

Reliability Test Cost Yes Yes Yes

Accelerated Reliability Test Yes Yes Yes +

WeiBayes Substantiation Testing No No Yes

Test Results / Confidence Exponential Distribution Yes Yes Yes

Test Results / Confidence Binomial Distribution No Yes Yes

Pr
od

uc
ti

on

Design of Experiments 2 Factor DOE No No Yes

Design of Experiments 3 Factor DOE No No Yes

Design of Experiments 4 Factor DOE Yes Yes Yes

HASS - ESS No Yes Yes

HASA No Yes Yes

Sampling Plans No No Yes

Process Capability No No Yes

Fi
el

d Weibull Analysis Yes Yes Yes +

Optimal Replacement Interval No No Yes

Sparing Analysis (Graphical) Yes Yes Yes

Spares Analysis (Tabular) Yes Yes Yes +

❯❯❯ With over two dozen new or improved tools!

Th is is a paid advertisement.
Data & Analysis Center for Software (DACS) 29

RUNNING OPEN TECHNOLOGY DEVELOPMENT PROJECTS (CONT.)

of the community. Over time the community should grow,
thereby bringing in new people and ideas and leading to an
increase in competence and competition for government
contracts.

OTD Rules of the Road:
Don’t Fork OSS Solely for Government Use

A common mistake made by government projects that begin
to adopt OTD approaches is to start with creating a fork by
taking a snapshot of the source code and modifying it for their
own needs, in isolation from the community surrounding
that code.

This is a mistake because successful OTD projects are
constantly evolving and improving. Creating a fork isolates
all fork users from the main OTD project, including the
improvements it makes. Refreshing OTD components is a
very effective way of evolving the baseline for the project. It is
important to remain synchronized with latest formal releases
of the selected projects for system reliability, technological
relevance, and obtaining the maximum benefit of an OTD
approach.

In some cases, there is no need to modify the component
itself. The component’s application programmer interface
(API) or plug-in system may provide the necessary flexibility
without changing the component at all.

If a component must be changed, fixes and key enhancements
to the baseline should be developed in consultation with
original project and then submitted back to the original
project. Unique government interfaces and functionality
should be segregated through plug-in mechanisms or with APIs
at a higher level. Taking this approach allows the government
project to painlessly upgrade when new releases are made by
the external project. Most useful components are continuously
improved, so the ability to perform periodic upgrades must be
built into the development and maintenance process.

In some cases, a project must make significant modifications
to an OTD component it will depend on. First make sure
that this is really the case; sometimes it is not. But if it is the
case, discuss with that component’s project the changes that
need to be made, and look for ways to submit those changes
incrementally to the upstream project. This will increase
the likelihood that these changes will be accepted by that
component’s project. It is best if there is a contract incentive
that changes to external projects be accepted back into those

projects, to encourage the contractor to work with those
external projects.

Open Standards
Use open standards. For purposes of this paper, an “open

standard” is a specification that at least meets the European
Union’s definition as adopted in the European Interoperability
Framework:

•	 The standard is adopted and will be maintained by a
not-for-profit organization, and its ongoing development
occurs on the basis of an open decision-making procedure
available to all interested parties (consensus or majority
decision etc.).

•	 The standard has been published and the standard
specification document is available either freely or at a
nominal charge. It must be permissible to all to copy,
distribute and use it for no fee or at a nominal fee.

•	 The intellectual property - i.e. patents possibly present - of
(parts of) the standard is made irrevocably available on a
royalty-free basis.

•	 There are no constraints on the re-use of the standard.

Sometimes extensions are needed, but they should only be
used with consideration as it can be easy to become accidentally
locked into a proprietary extension. Being locked into a
proprietary extension can be a problem, particularly if it is only
implemented by a proprietary program (since this effectively
eliminates competition, raising costs long-term). Consider
requiring tests (as part of the contract) with an alternative
implementation of a standard to increase the likelihood of
staying within standard. Where appropriate, create or work
to extend open standards.

Continuous Delivery
Development should be a continuous evolution through

relatively small tracked changes. That way, others can
effectively review these changes. These changes should not
prevent a system from building or running. In some cases,
a change will not have a user-visible effect, e.g., it may be
an architectural change to prepare for future functionality.
Daily builds followed by automated regression tests are
highly recommended; these make problems immediately
apparent.

Managing Intellectual Rights
Ensure that each contribution includes the necessary

intellectual rights (including “data rights”) that enable

STN 14-1 February 2011: DoD and Open Source Software30

the project developers and users to continue in their use,
modifi cation, and redistribution as appropriate. In particular,
examine copyright markings on contributions, and look for
the insertion of new dependencies on proprietary tools and
components. Incorrect markings are often copied to other
material, so incorrect markings can “spread” to other projects.

An OSS project must reject any contribution that does
not meet the OSS project’s chosen license(s). Similarly, an
OGOTS project must reject contributions that do not permit
OTD development. In particular, an OGOTS project should
reject contributions with only “restricted rights” as defi ned
in DFARS 252.227-7014(a)(14) as these do not provide the
government and contractors with suffi cient rights to reuse the
software in arbitrary government circumstances.

 References

[Bacon2009] Bacon, Jono. August 2009. The Art of
Community: Building the New Age of Participation. ISBN:
978-0-596-15671-8. http://www.artofcommunityonline.
org/downloads/jonobacon-theartofcommunity-1ed.pdf

[Fogel2009] Fogel, Karl. 2009. Producing Open Source
Software: How to Run a Successful Free Software
Project. http://producingoss.com/

[Martin2000] Martin, Robert C. 2000. Design Principles
and Design Patterns. http://www.objectmentor.com/
resources/articles/Principles_and_Patterns.pdf

This document is released under the Creative Commons
Attribution ShareAlike 3.0 (CC-BY-SA) License. You are free
to share (to copy, distribute and transmit the work) and to remix
(to adapt the work), under the condition of attribution (you must
attribute the work in the manner specifi ed by the author or licensor
(but not in any way that suggests that they endorse you or your use
of the work)). For more information, see <http://creativecommons.
org/licenses/by/3.0/>.

Th e U.S. government also has unlimited rights to this document
per DFARS 252.227-7013.

Work sponsored by the Assistant Secretary of Defense (Networks
& Information Integration) (NII) / DoD Chief Information
Offi cer (CIO) and the Under Secretary of Defense for Acquisition,
Technology, and Logistics (AT&L)

Online Learning Center

Cost effective way for organizations to provide
continuous learning opportunities for their employees

Technical Training On Demand

To view the catalog visit: www.thedacs.com/training
For details call: 1.800.214.7921

Accessible
Classes available 24/7/52
From:

• Home
• Office
• Travel

Accreditation
Certification

• CEUs granted
• IACET accreditation supported

Affordable
• Pay one annual subscription fee ($475)
• Take as many classes as you want

Comprehensive
• 450+ classes
• 12,000 topics
• Programming & Web Development
• Course Catalog

Latest Technologies

• Java XML
• Oracle
• Server technologies
• .NET Framework

Flexible
• Fit course work into your schedule
• Self Paced
• Refresh Knowledge
• Study during lunch or after work

Data & Analysis Center for Software (DACS) 31

Publicly Releasing Open Source Software Developed
for the U.S. Government
By Dr. David A. Wheeler

This article summarizes when the U.S. federal
government or its contractors may publicly release, as
open source software (OSS), software developed with

government funds. This article is intended for non-lawyers, to
help them understand the basic rules they must follow.

Before going further, a few definitions and warnings are
necessary. In this article, the term “government” means
the U.S. federal government. “You” means the government
organization or contractor who wants to release software to
the public as OSS. “Releasing to the public as OSS” means
(1) releasing the software source code to the general public
(such as through a public website) and (2) giving its users the
freedom to use it (for any purpose), study it, modify it, and
redistribute it (modified or not)1. Note that these freedoms
can be given by releasing the software under an OSS license,2
or by releasing it without any copyright protection. This article
is not legal advice, and variations of specific facts can produce
different results. Also, note that government contracting is
very different from commercial practices; do not presume that
commercial practices apply.

To determine if you can release to the public some software
developed with government funds as OSS, you must answer
the following five questions:

1. What contract applies, what are its terms, and
what decisions have been made?

First, find the contract and find what terms apply, particularly
which data rights clauses apply. Most contracts use one of a
small set of standard data rights clauses, but you need to find
out which clauses apply, and if the contract grants exceptions.
If the clause text is different (e.g., older) than the clauses
discussed here, or makes an exception, then the contract (if

1 This is, in summarized form, the Free Software Definition (http://www.gnu.org/
philosophy/free-sw.html) from the Free Software Foundation. A similar definition
is in the DoD’s “Clarifying Guidance Regarding Open Source Software (OSS)”
(http://cio-nii.defense.gov/sites/oss/2009OSS.pdf). A more detailed definition of
OSS is the Open Source Definition (http://www.opensource.org/osd.html) from
the Open Source Initiative.

2 To release under an OSS license you must have the copyright-related rights
(listed in 17 USC §106) to reproduce the work, to prepare derivative works, to
distribute copies, and to permit others to perform those actions.

legal) governs. Also, determine what data rights decisions have
been made by the contracting officer.

2. Do you have the necessary copyright-related
rights?

The following table shows the default copyright-related
rights for common circumstances. The first row is a special
case, where a federal employee develops the software as part
of his or her official duties. Later rows discuss the typical
impact of common data rights clauses from the Federal
Acquisition Regulation (FAR) or the Department of Defense
FAR Supplement (DFARS) (but note the dates):

These are the general rules, but you must examine your
specific circumstances to determine exactly what you can
do. There are details in the FAR and DFARS clauses not
emphasized here, and the contract can change from these
defaults to something very different. Some contracts will use
different versions of the FAR and DFARS clauses, so check to
see if there are any relevant differences. Note that some other
agencies (like NASA) have FAR supplements, which are not
covered here.

The table above only applies to software that was either (1)
developed by a government employee as part of his or her
official duties or (2) developed by a government contractor
(directly or indirectly) as part of a government contract. Such
software may include or depend on other software, such as
commercial software, that does not meet these criteria. When
a system includes commercial software, the commercial license
applies to those components, and everyone must comply with
their license terms. Commercial software includes any software
that is used for at least one non-governmental use and has been
sold, leased, or licensed to the general public (per 41 USC
§403 and DFARS 252.227-7014(a)(1)), so nearly all publicly-
available OSS is commercial software. Commercial software
with minor modifications is still considered commercial
software.

In many cases the contractor receives copyright. When there
are multiple contractors or suppliers (e.g., a lead integrator
and subcontractors), the legal arrangements between the

STN 14-1 February 2011: DoD and Open Source Software32

PUBLICLY RELEASING OPEN SOURCE SOFTWARE DEVELOPED FOR THE U.S. GOVERNMENT (CONT.)

Circumstance Other Conditions
(if any) Case Can government release as OSS? Can contractor

release as OSS?

U.S. federal government employee (including military
personnel) develops software as part of his/her official
duties. This makes it a “Work of the U.S. government.”

A Effectively yes. The software is not subject to
copyright protection in the U.S. per 17 USC
§105, so if released, anyone in the U.S. can
read, use, modify, and redistribute it. The
government may apply for copyright outside
U.S., but still release the software as OSS.

N/A

FAR 52.227-14
contract clause
defaults (December
2007), software
first produced in
performance of
contract.

Government has not granted
the contractor the right to assert
copyright (default).

B Yes. The government normally has unlimited
rights (essentially the same rights as a copyright
holder) per (b)(1). In the FAR source code is
software, and software is data, so source code
is data.

No. The contractor
may request
permission to assert
copyright.

Government has granted the
contractor the right to assert
copyright (e.g., via specific
written permission or via clause
alternate IV).

C No. The government does not have sufficient
rights, per (c)(1)(iii); it cannot distribute copies
to the public. The government should be wary
of granting a request to assert copyright, as it
permanently loses many rights to data it paid
to develop.

Yes. The contractor
may assert copyright.

DFARS 252.227-7014
contract clause
defaults (June 1995).

Developed exclusively with
government funds.

D Yes. The government has unlimited rights
(essentially the same rights as a copyright
holder). Per (b)(2)(ii), the 5-year period from
mixed funding can be negotiated to a different
length of time, and it starts “upon execution
of the contract, subcontract, letter contract
(or similar contractual instrument), contract
modification, or option exercise that required
development of the computer software.”

Yes. Copyright is held
by the contractor/
supplierDeveloped by mixed funding

(government partly paid for its
development) and (sub)contract
execution/mod more than 5
years ago.

E

Developed by mixed funding
(government partly paid for its
development) and (sub)contract
execution/mod less than 5 years
ago.

F No. The government does not have sufficient
rights. Per (b)(2)(ii), the 5-year period from
mixed funding can be negotiated to a
different length of time; during this time the
government only has “government purpose
rights.” If software is developed exclusively at
private expense, by default the government
only has “restricted rights”; the government
should be wary of dependencies on such
components. The government can negotiate
for greater rights per (b)(3) and (b)(4).

Developed exclusively at private
expense.

G

Table 1: The default copy-related rights for common circumstances. Continues on next page.

organizations determine which contractors/suppliers are legally
allowed to assert copyright. Lead contractors do not necessarily
receive copyrights from their subcontractors and suppliers.
Note that the government can receive and hold copyrights
transferred to it, per 17 USC §105.

In many cases the government is not the copyright holder
but has unlimited rights (see rows B, D, E, and I). If the
government has unlimited rights, it has essentially the same
rights as a copyright holder for purposes of releasing the

software as OSS3. Thus, it can release the software under
any OSS license it chooses, including the GNU General
Public License (GPL) and Lesser GPL (LGPL)4. When the

3 The Council on Governmental Relations (CAGR)’s “Technical Data and Com-
puter Software: A Guide to Rights and Responsibilities Under Federal Contracts,
Grants and Cooperative Agreements” states that “This unlimited license enables
the government to act on its own behalf and to authorize others to do the same
things that it can do, thus giving the government essentially the same rights as the
copyright owner.”

4 CENDI’s “Frequently Asked Questions about Copyright and Computer
Software” at http://cendi.gov/publications/09-1FAQ_OpenSourceSoftware_FI-
NAL_110109.pdf question 4.3 says: “an agency may distribute software created
by a vendor to all users under an open source licensing scheme if it acquired suf-

Data & Analysis Center for Software (DACS) 33

PUBLICLY RELEASING OPEN SOURCE SOFTWARE DEVELOPED FOR THE U.S. GOVERNMENT (CONT.)

Circumstance Other Conditions
(if any) Case Can government release as OSS? Can contractor

release as OSS?

DFARS 252.227-7018
contract clause
defaults (June 1995):
Small Business
Innovation Research
(SBIR) Program.

Not developed
exclusively
at private
expense.

Less than five
years after
completion of
the project

H No. The government does not have sufficient
rights, per (b)(4)(i).

Yes. The contractor
has copyright.

More than five
years after
completion of
the project and
alternate I is
not used.

I Yes. The government has unlimited rights
(essentially the same rights as a copyright
holder) per (b)(1)(vi). Unfortunately, it is
sometimes difficult to determine when the time
period has expired.

More than five
years after
completion of
the project and
alternate I is
used.

J Sometimes. Under alternate I the Government
cannot exercise its rights to release if, within
certain time limits, the software is published
and the contracting officer is notified. This
limitation continues as long as it is reasonably
available to the public for purchase (after which
the government can release it as OSS). See
alternate I for details.

Developed exclusively at private
expense.

K No. The government does not have sufficient
rights, per (b)(2).

FAR 52.227-17
“Special works”
contract clause
defaults (December
2007)

Government has not granted
the contractor the right to assert
copyright (default), and the
software was first produced in
perform¬ance of the contract.

L Yes, either through unlimited rights or by
holding copyright. By default, the government
has unlimited rights in all data delivered under
the contract, and in all data first produced in
the performance of the contract, per (b)(1)(i).
Per (c)(ii), if the contractor has not been granted
permission to assert copyright rights, the
contracting officer can direct the contractor to
assign copyright to the government.

No. Contractor
cannot assert
copyright rights
per (c)(1)(i). The
contractor may
request permission
to assert copyright; if
granted see below.

Government has granted the
contractor the right to assert
copyright, and the software was
first produced in perform¬ance
of the contract.

M No. The government only has the more limited
rights listed at the end of (c)(1)(i), and these
rights are limited to uses “by or on behalf of the
Government.”

Yes. Contractor has
copyright.

Software not first produced in
the performance of this contract.

N It depends. Note that a contractor cannot
include copyrighted software into a deliverable
without written permission of the contracting
officer, see (c)(2) for more.

It depends.

DFARS 252.227-7020
“Special works”
contract clause
defaults (June 1995).

Work first produced, created, or
generated and required to be
delivered under the contract.

O Yes. The government receives the copyright,
per (c)(2).

No. The government
has copyright.

Other copyrighted works
incorporated into a required
deliverable (unless written
approval granted for an
exception).

P Normally yes. Per (c)(3) and (d), the contractor
must normally grant to the government a long
list of data rights when incorporating other
copyrighted works, and these rights permit OSS
release. The contractor may only incorporate
software without those rights into a deliverable
if the government contracting officer gives
written approval, per (d).

Normally yes. The
contractor must
already have the
rights for OSS release
to incorporate it,
unless given written
approval.

STN 14-1 February 2011: DoD and Open Source Software34

government has unlimited rights but is not the copyright
holder, there are a few actions it cannot take, e.g., the right
to transfer or assign rights, and standing to sue in court over
copyright infringement5. However, for the purposes here these
are technicalities; the key point is that the government can
release the software as OSS, under any OSS license it chooses,
once it receives unlimited rights.

The government should be extremely wary of receiving
less than unlimited rights for software or systems it paid to
develop. For example, some contractors will intentionally
embed components over which they have exclusive control,
and then design the rest of the system to depend on those
components. When the government has less than unlimited
rights, it risks creating a dependency on a contractor, rendering
competition for that system meaningless6 and in some cases
putting military capability at risk.7 8

Some have misunderstood U.S. law and policy as requiring
the government to mindlessly accept proposals which give
less than unlimited rights for systems developed though
government funding. It is true that 10 U.S.C. §2320(a)(2)
(F) states that “a contractor or subcontractor (or a prospective
contractor or subcontractor) may not be required, as a
condition of being responsive to a solicitation or as a condition
for the award of a contract, to … sell or otherwise relinquish to

ficient rights from the vendor to do so in the software. For example, an “unlimited
rights license” acquired under a DFARS procurement-type contract...” Similarly,
the “DoD Open Source Software (OSS) FAQ” says that once the government has
unlimited rights, it can “use those rights to release that software under a variety of
conditions (including an open source software license), because it has the use and
modify the software at will, and has the right to authorize others to do so.”

5 The government can probably take other measures against someone who does
not comply with the license, though. For example, the government may be able to
sue for breach of license. Also, an infringer may lose any ability to enforce rights
over the resulting work in U.S. court due to the doctrine of unclean hands.

6 Ashton B. Carter, “Memorandum to Acquisition Professionals Subject: Better
Buying Power: Mandate for Restoring Affordability and Productivity in Defense
Spending” https://dap.dau.mil/policy/Documents/Policy/Carter Memo on Defense
Spending 28 Jun 2010.pdf - His first point on providing incentives is to “Avoid di-
rected buys and other substitutes for real competition. Use technical data packages
and open systems architectures to support a continuous competitive environment.”

7 GAO GAO-06-839 “WEAPONS ACQUISITION: DOD Should Strengthen
Policies for Assessing Technical Data Needs to Support Weapon Systems” (July
2006) http://www.gao.gov/new.items/d06839.pdf reported that “The lack of tech-
nical data rights has limited the services’ flexibility to make changes to sustainment
plans that are aimed at achieving cost savings and meeting legislative requirements
regarding depot maintenance capabilities... Unless DOD assesses and secures its
rights for the use of technical data early in the weapon system acquisition process
when it has the greatest leverage to negotiate, DOD may face later challenges in
sustaining weapon systems over their life cycle.”

8 See, for example, “Fire support’s dependence on contractors,” Sgt Timothy
Caucutt, http://www.mca-marines.org/gazette/article/paying-pirates

the United States any rights in technical data [except in certain
cases, and may not be required to] refrain from offering to
use, or from using, an item or process to which the contractor
is entitled to restrict rights in data”9. However, this is not the
whole story. “If the Government has properly required certain
data or software in a solicitation, it is entitled to certain rights
in accordance with the statute and an offer failing to propose at
least those rights could be held unacceptable.” What is more,
the government may (and should) evaluate proposals “on the
basis of data rights and giving higher ratings to offerors willing
to provide more than the bare minimum rights”10

Under many of the FAR (but not DFARS) clauses, if the
government agrees to allow contractors to assert copyright, the
government loses many of its rights, forever, to software that
the government paid to develop (see rows B, C, L, and M).
This loss of rights can be quite detrimental to the government.
What’s more, it creates a difficult decision for a contracting
officer to make, as the contracting officer must anticipate all
possible future uses to make a good decision (something that is
difficult in practice). The usual DFARS clause (252.227-7014)
avoids this problem; in this clause, typically the government
ends up with unlimited rights to software it paid to develop
(in some cases after a delay), and the contractor has copyright,
enabling both parties to take actions such as releasing the
software as OSS.

Here are a few notes about specific clauses:
•	 Under FAR 52.227-14 (rows B and C), the government

can grant a contractor the right to assert copyright,
at which point the contractor gains rights but the
government permanently loses rights. Per FAR 27.404-3(a)
(2), the government should grant this request only “when
[that] will enhance appropriate dissemination or use.”
Government officials should not grant this automatically,
as doing so dramatically reduces the government’s rights
to software that the government paid to develop. The
government could choose to grant this permission on
condition that the software be immediately released to
the public under some specific OSS licenses (with the
license agreed upon as part of the condition for release).
In such a case, public release as OSS would be used as a

9 This U.S. law does not cover software, but the DoD also applies this to software
per DFARS 227.7203-1(c) and (d).

10 George O. Winborne, Jr., “Who’s Killing the Goose?” American Bar Associa-
tion Section of Public Contract Law Program Intellectual Property in Government
Contracts—What You Didn‘t Learn in Kindergarten, November 11-12, 2010,
Seaport Hotel, Boston, Massachusetts. https://acc.dau.mil/adl/en-US/401584/
file/54029/Winborne_ABAPCL_paper_Who’s_Killing_the_Goose_For _Release.
pdf

PUBLICLY RELEASING OPEN SOURCE SOFTWARE DEVELOPED FOR THE U.S. GOVERNMENT (CONT.)

method to enhance dissemination and use. Deliverables
can include data not first produced in the performance of
the contract, per (c)(2), but in this case it is not clear to
this author if the government can release software as OSS.

•	 Under DFARS 252.227-7014 (rows D-G), the contractor
normally gets copyright. The government gets the same
rights as a copyright holder (via unlimited rights) if (1)
the software was developed exclusively with government
funding or (2) the funding was mixed and five years have
passed after the relevant contract or contract modification
that caused its development was signed. The government
should beware of situations where the contractor
attempts to deliver software that vitally depends on some
component that they developed entirely at private expense.
Such a dependency can inhibit any future competition
for maintenance, as by default the government only has
restricted rights to such components.

•	 Under DFARS 252.227-7018 (rows H-J), the government
typically gets unlimited rights to software not exclusively
developed at private expense, but only after five years
after the project has completed (note that this is a different
starting time than DFARS 252.227-7014). Amendment I
can remove this right as long as the product is “reasonably
available to the public for purchase.”

•	 FAR 52.227-17 (rows L-N) is, according to FAR
27.409(e), to be used for software for the “government’s
internal use” or where “there is a need to limit distribution”
or to “obtain indemnities for liabilities.” However,
purposes change; software originally developed for the
“government’s internal use” may become software that
should be publicly released as OSS. This document simply
describes what is allowed, rather than the expectations of
the original contract authors.

•	 DFARS 252.227-7020 (rows O-P, the special works
clause) is discussed in DFARS 227.7106. That discussion
does not specifically mention software, but the -7020
clause can be used for software. DFARS 227.7106(2)
says it can be used for “a work” and is not just limited
to “technical data.” This clause should be used if the
government must own or control copyright. For example,
it might be appropriate if the government wishes publicly
release OSS and be able to (1) directly enforce copyright
in court, and/or (2) provide indemnification.

3. Do you have the necessary other intellectual
rights (e.g., patents)?

You need to make sure that you have any other necessary
intellectual rights. Most importantly, determine if there are
any relevant patents, and if so, what the rights to them are.

Other potential issues are trademark, trade dress, government
seals, and trade secrets. Trademark issues, if relevant, can often
be easily addressed by simply removing the trademark marking.
If the contractor has granted copyright or unlimited rights to
the government, then the government already has the rights
to release that information to the public and is thus not barred
from public release by trade secret law.

4. Do you have permission to release to the public?
In particular, for public release the material must not be

restricted by:

•	 Classification. Classified data cannot be legally released
to the public. Where this is not obvious, a classification
review may be required.

•	 Distribution statements. A government contracting officer
may require certain clauses be included in data (including
software) to limit its release; contractors must obey these
clauses or cause them to be rescinded.

•	 Export controls. The Export Administration Regulations
(EAR) are issued by the Department of Commerce), and
the International Traffic in Arms Regulations (ITAR) are
issued by the Department of State. These prohibit the
unlicensed export of specific technologies for reasons
of national security or protection of trade. Note that
cryptography can invoke export control issues.

Export controls can be particularly confusing, and the
penalties for failing to comply with them can be stiff (including
large fees and jail time). Thus, here are some basics about
export control:

•	 More information about export control regulations
under the EAR are provided by the U.S. Department of
Commerce Bureau of Industry and Security (BIS). In
particular, see their pages on “Export Control Basics” and
“Licensing Guidance.” Any item (including software) that
is sent from the US to a foreign destination, including
to any foreign national, is an export – even if the item
originally came from outside the US. Certain U.S.
exports/re- exports require a license from BIS. A key is
knowing whether the item you are intending to export has
a specific Export Control Classification Number (ECCN)
as listed in the Commerce Control List (CCL), available
on the EAR website. In addition, a license is required for
virtually all exports and many re-exports to embargoed
destinations and countries designated as supporting
terrorist activities.

Continued on page 38

STN 14-1 February 2011: DoD and Open Source Software36

Two Great Reliability Solutions
from the RIAC & DACS.

The RIAC/DACS System
Reliability Toolkit provides
technical guidance in all
aspects of system reliability,
a l l o w i n g t h e u s e r t o
understand and implement
techniques to ensure that
system and product designs
exhibit satisfactory hardware,
software and human reliability, and to minimize the inherent risks
associated with deficiencies in system reliability.

To purchase, please contact:
The Reliability Information Analysis Center
100 Seymour Road
Suite C-101
Utica, NY 13502
1-877-363-RIAC
http://theRIAC.org

This f irst edit ion of the
DACS Software Reliability
S o u r c e b o o k p r o v i d e s
a concise resource for
information about the practical
appl icat ion of software
reliability technology and
techniques. The Sourcebook
is divided into nine major
sections, plus seven supporting appendices.

To purchase, please contact:
The Data & Analysis Center for Software
100 Seymour Road
Suite C-102
Utica, NY 13502
1-800-214-7921
http://thedacs.com

Data &Analysis Center for Software

System
Reliability
Toolkit

The DACS
Software
Reliability
Sourcebook

Data & Analysis Center for Software (DACS) 37

PUBLICLY RELEASING OPEN SOURCE SOFTWARE DEVELOPED FOR THE U.S. GOVERNMENT (CONT.)

•	 Similarly, more information about the export control
regulations under the ITAR, which implements the
Arms Export Control Act (AECA), are provided by the
U.S. Department of State Directorate of Defense Trade
Controls (DDTC) (http://www.pmddtc.state.gov). In
particular, see their page on “Getting Started.” The US
regulates exports and re-exports of defense items and
technologies, so if what you wish to export is covered by
the U.S. Munitions List (USML), a license from DDTC
is required. You may file a commodity jurisdiction request
(CJ) to determine whether an item or service is covered by
the U.S. Munitions List (USML) and therefore subject to
export controls related to AECA and ITAR.

The Department of Defense (DoD) does not have authority
to grant export control licenses. A contractor may be liable
if he or she relies on a DoD official’s permission for export
control, because in most cases the DoD does not have this
authority. Note that even when an export-controlled release of
software is granted, it is often contingent on not releasing the
source code, making such “releases” useless for open technology
development among all parties.

However, if the DoD determines that something it has
purview over is releasable to the public, it is no longer
subject to export control. This is because 15 C.F.R. 734.3(b)
(3) says that “The following items are not subject to the EAR
. . . Publicly available technology and software....” Similarly,
22 CFR 125.4 (13) notes that technical data is exempt from
ITAR export controls if it is “approved for public release (i.e.,
unlimited distribution) by the cognizant U.S. government
department or agency or Office of Freedom of Information
and Security Review.” Thus, if software is intended to be
released to the public, having the cognizant U.S. government
department or agency (such as the DoD) approve its public
release is often the best way to fully comply with export
control regulations.

5. Do you have the materials (e.g., source code) and
are all materials properly marked?

The government and upper-tier contractors should ensure
that they receive all material, including source code, that they
are entitled to. It is all too common to have the right to the
source code or related materials, yet not have it and thus
be unable to exercise your rights. Source code is necessary
for potential OSS release, and it is also necessary to enable
competition for future software maintenance bids. Both
the government and contractors should make sure that they
do not lose the source code, but instead treat it as valuable

data (e.g., by creating multiple backup copies in different
locations).

Under DFARS 252.227-7014, the definition of “computer
software” includes not only “computer programs” but also
“source code, source code listings... and related material that
would enable the software to be reproduced, recreated, or
recompiled.” Thus, a delivery of developed software is supposed
to include source code by default. Also, (b)(1)(i) and (b)(2)
(i) state that the government has rights to software (whether
it was a deliverable or not) if its funds were used.

Source code should only be accepted if is ready for use.
Material should only be considered acceptable as source code
if it is the preferred form of the work for making modifications
to it. Source code should not be accepted if it is just a printout
or electronic images of a printout. It should not be accepted
unless it is easy to automatically rebuild, e.g., a “make” or
similar simple command should be sufficient to recreate an
executable. Build documentation should be included with
any deliverable, including information on what is required
to rebuild it.

It would be best if the source code also included the
historical record (e.g., a complete record of each change,
who made it, and when), in an electronic form adequate
for transfer to another configuration management system.
Ideally, the government should have sufficient access to the
software engineering environment of the contractor, so that
the government could monitor changes as they are made.

Ensure that the source code and other materials are marked
appropriately. Companies may include restrictive markings
on materials, and if those markings are inappropriate, then
the markings need to be fixed. Government contract clauses
include processes for fixing incorrect markings; follow them.
Government and upper-tier contractors need to promptly
challenge improperly marked materials due to time limits.
For example, contracts using DFARS 227.7203-13 include,
in item (d)(3)(i), a challenge time limit of three years after
either the final payment or the delivery of software, whichever
is later. Also, improper markings tend to be copied into other
materials; fixing markings early greatly reduces the effort to
fix them later.

Who has authority?
Unfortunately, it is not always obvious who in government

or the various contractors can make these decisions. It would
be best if the government and contractors could clarify roles,

STN 14-1 February 2011: DoD and Open Source Software38

policies, and procedures. In the meantime, the following may
be helpful:

•	 As noted above, when there are multiple contractors or
suppliers, the legal arrangements between the organizations
determine which contractors/suppliers are legally allowed
to assert copyright. Lead contractors do not necessarily
receive copyrights from their subcontractors and suppliers.
By U.S. law (17 USC §201), “Copyright... vests initially
in the author or authors of the work... In the case of a
work made for hire, the employer or other person for
whom the work was prepared is considered the author
[and holds the copyright] unless the parties have expressly
agreed otherwise in a written instrument signed by them.”

•	 The 2009 DoD OSS memo does clarify who in the DoD
can determine when it should release software as OSS,
and under what conditions. It says that “Software items,
including code fixes and enhancements, developed for
the Government should be released to the public (such as
under an open source license) when all of the following
conditions are met:

1. The project manager, program manager, or other
comparable official determines that it is in the
Government’s interest to do so, such as through
the expectation of future enhancements by others.

2. The Government has the rights to reproduce
and release the item, and to authorize others to
do so. For example, the Government has public
release rights when the software is developed by
Government personnel, when the Government
receives “unlimited rights” in software developed by
a contractor at Government expense, or when pre-
existing OSS is modified by or for the Government.

3. The public release of the item is not restricted
by other law or regulation, such as the Export

Administration Regulations or the International
Traffic in Arms Regulation, and the item qualifies
for Distribution Statement A, per DoD Directive
5230.24 (reference (i)).”

•	 Some organizations do not have a review process for
software source code but do have a process for reviewing
documents. In these cases, it may be appropriate to submit
the source code to the document review process. This is
especially relevant for classification review.

Final notes
If the government and relevant contractors intend to release

software as OSS, it’s best if that is explicitly stated ahead of
time. For example, OSS could be identified as the planned
software maintenance philosophy per DFARS 227.7203-2(b)
(1). However, since many contracts do not discuss releasing
software as OSS, it’s important to understand the default rules
for commonly-encountered cases.

If software is released to the public as OSS and it becomes
“customarily used by the general public or by nongovernmental
entities for purposes other than governmental purposes,” then
that software becomes commercial software. This is by both law
(41 USC §403) and regulation (e.g., DFARS 252.227-7014(a)
(1)). It does not matter if the software was originally developed
with government funds, or not. Thus, releasing software as
OSS can be a commercialization approach.

The U.S. government and its contractors have released
many programs as OSS. I hope that this material helps you
understand how you can release software as OSS in a manner
consistent with laws, regulations, and contracts.

The publication of this paper does not indicate endorsement by
the Department of Defense or IDA, nor should the contents be
construed as reflecting the official positions of those organizations.

Data & Analysis Center for Software (DACS) 39

The DACS Gold Practice Initiative:
• Promotes effective selection/use of software acquisition

& development practices

• Defines essential activities/benefits of each practice

• Considers the environment in which each practice is used

• Addresses the timeliness of practice benefits

• Recognizes interrelationships between practices that

influence success or failure

• Contains quantitative and qualitative information

• A continually evolving resource for the DoD, Government,

Industry and Academia

• Free to use/free to join

Current Gold Practices:
• Acquisition Process Improvement

• Architecture-First Approach

• Assess Reuse Risks and Costs

• Binary Quality Gates at the Inch-Pebble Level

• Capture Artifacts in Rigorous, Model-Based Notation

• Commercial Specifications and Standards/Open Systems

• Defect Tracking Against Quality Targets

• Develop and Maintain a Life Cycle Business Case

• Ensure Interoperability

• Formal Inspections

• Formal Risk Management

• Goal-Question-Metric Approach

• Integrated product and Process Development

• Metrics-Based Scheduling

• Model-Based Testing

• Plan for Technology Insertion

• Requirements Management

• Requirements Trade-Off/Negotiations

• Statistical Process Control

• Track Earned Value

Learn More About the DACS
Gold Practice Initiative:
http://www.goldpractices.com

100 Seymour Road
Utica, NY 13502

http://www.thedacs.com

STN 14-1 February 2011: DoD and Open Source Software40

Additional OSS Resources

❯ Mil-OSS connects and empowers an active community of civilian
and military open source software and hardware developers across
the United States: http://www.mil-oss.org/

 MIL-OSS Google Group: http://groups.google.com/group/mil-
oss?hl=en

❯ A coalition organized to serve as a centralized advocate, to
encourage broader U.S. Federal Government support of and
participation in Open Source projects and Technologies: http://
opensourceforamerica.org/

❯ GOSCON is the Government Open Source Conference, an
annual event produced by Oregon State University’s Open Source
Lab: http://goscon.org/

❯ The DACS topic page contains information relative to the
development, use, licensing and promotion of open source
software including operating systems, browsers and applications:
https://www.thedacs.com/databases/url/key/4878

❯ Frequently Asked Questions about Copyright and Computer
Software - Issues Aff ecting the U.S. Government with Special
Emphasis on Open Source Software (CENDI/09-1) (Updated
October 2010):

 http://www.cendi.gov/publications/09-1FAQ_OpenSourceSoftware_
FINAL_110109.pdf

❯ Th is memorandum provides clarifying guidance on the use of
OSS and supersedes the previous DoD CIO memorandum dated
May 28,2003 (reference (a)):

http://cio-nii.defense.gov/sites/oss/

❯ Producing Open Source Software is a book about the human
side of open source development. It describes how successful
projects operate, the expectations of users and developers, and
the culture of free software. Th e book is released under an open
copyright: it is available in bookstores and from the publisher
(O’Reilly Media), or you can browse or download it here: http://
producingoss.com/

Data & Analysis Center for Software (DACS) 41

Th e STN is a theme-based quarterly journal. In the past DACS has typically solicited specifi c authors to participate in
developing each theme, but we recognize that it is not possible for us to know about all the experts, programs, and work being
done and we may be missing some important contributions. In 2009 DACS adopted a policy of accepting articles submitted
by the software professional community for consideration.

DACS will review articles and assist candidate authors in creating the fi nal draft if the article is selected for publication. Note
that DACS does not pay for articles published. Note also that submittal of an article constitutes a transfer of ownership from
the author to DACS with DACS holding the copyright.

Although the STN is theme-based, we do not limit the content of the issue strictly to that theme. If you submit an article that DACS
deems to be worthy of sharing with the community, DACS will fi nd a way to get it published. However, we cannot guarantee publication
within a fi xed time frame in that situation. Consult the theme selection page and the Author Guidelines located on the STN web site
(see https://www.softwaretechnews.com/) for further details.

To submit material (or ask questions) contact news-editor@thedacs.com

Recent themes include:
•	 Earned Value
•	 Software Testing
•	 Project Management
•	 Model Driven Development
•	 Software Quality and Reliability
•	 Cyber Security

STN Article Submission Policy

STN 14-1 February 2011: DoD and Open Source Software42

DACS
100 Seymour Road

Utica, NY 13502-1348
Phone: 800-214-7921

Fax: 315-732-3261
E-mail: news-editor@thedacs.com

URL: http://www.thedacs.com/

STN EDITORIAL BOARD

John Dingman
Managing Editor

Editorial Board Chairman
Quanterion Solutions, DACS

Tom McGibbon
DACS Director

Quanterion Solutions, DACS

Shelley Howard
Graphic Designer

Quanterion Solutions, DACS

Paul Engelhart
DACS COR

Air Force Research Lab

Morton A. Hirschberg
Army Research Lab (retired)

Dr. Kenneth E. Nidiffer
Software Engineering Institute

Dr. David A. Wheeler
Institute for Defense Analyses

Dennis Goldenson
Software Engineering Institute

John Scott
Mercury Federal Systems

ABOUT THIS PUBLICATION
The Software Tech News is published quarterly by the Data & Analysis Center for
Software (DACS). The DACS is a DoD sponsored Information Analysis Center (IAC),
administratively managed by the Defense Technical Information Center (DTIC). The DACS
is technically managed by Air Force Research Laboratory, Rome, NY and operated by
Quanterion Solutions Incorporated.

Reference herein to any specifi c commercial products, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government or the
DACS. The views and opinions of authors expressed herein do not necessarily state or
refl ect those of the United States Government or the DACS, and shall not be used for
advertising or product endorsement purposes.

ARTICLE REPRODUCTION
Images and information presented in these articles may be reproduced as long as
the following message is noted:

“This article was originally published in the Software Tech News, Vol.14, No.1
February 2011. “
Requests for copies of the referenced newsletter may be submitted to the
following address:

Data & Analysis Center for Software
100 Seymour Road
Utica, NY 13502-1348

Phone: 800-214-7921
Fax: 315-732-3261
E-mail: news-editor@thedacs.com
An archive of past newsletters is available at www.SoftwareTechNews.com.
In addition to this print message, we ask that you notify DACS regarding any document
that references any article appearing in the Software Tech News.

Distribution Statement:
Unclassifi ed and Unlimited

ADVERTISEMENTS
The Software Tech News is now accepting advertisements for future newsletters.
In addition to being seen by the thousands of people who subscribe to a paper
copy, an electronic version is available at the DACS website, exposing your product,
organization, or service to hundreds of thousands of additional eyes every month.

For rates and layout information contact: news-editor@thedacs.com

COVER DESIGN
Shelley Howard

Graphic Designer
Quanterion Solutions, DACS

ABOUT THE SOFTWARE TECH NEWS

Data & Analysis Center for Software (DACS) 43

Data & Analysis Center for Software
100 Seymour Road
Suite C-102
Utica, NY 13502

PRSRT STD
U.S. Postage

P A I D
Permit #566

UTICA, NY

Return Service Requested

STN 14-1 February 2011: DoD and Open Source Software

IN THIS ISSUE

Tech Views
By John Dingman, Editor .. 3

Software is a Renewable Military Resource
By John Scott, Dr. David A. Wheeler, Mark Lucas, and J.C. Herz .. 4

Military Open Source Community Growing
By Kane McLean, BRTRC Technology Research Corporation .. 10

Evaluating Open Source Software
By Matthew Kennedy ... 12

Open Source Software Is Commercial
By Dr. David A. Wheeler .. 16

Implementing Open Standards in Open Source
By Lawrence Rosen .. 20

Running Open Technology Development Projects
By John Scott, Dr. David A. Wheeler, Mark Lucas, and J.C. Herz .. 26

Publicly Releasing Open Source Software Developed for the U.S. Government
By Dr. David A. Wheeler .. 32

